hts-466284 has been researched along with Pancreatic-Neoplasms* in 3 studies
3 other study(ies) available for hts-466284 and Pancreatic-Neoplasms
Article | Year |
---|---|
TGF-β signaling promotes tube-structure-forming growth in pancreatic duct adenocarcinoma.
Tube-forming growth is an essential histological feature of pancreatic duct adenocarcinoma (PDAC) and of the pancreatic duct epithelium; nevertheless, the nature of the signals that start to form the tubular structures remains unknown. Here, we showed the clonal growth of PDAC cell lines in a three-dimensional (3D) culture experiment that modeled the clonal growth of PDAC. At the beginning of this study, we isolated the sphere- and tube-forming clones from established mouse pancreatic cancer cell lines via limiting dilution culture using collagen gel. Compared with cells in spherical structures, the cells in the formed tubes exhibited a lower CK19 expression in 3D culture and in the tumor that grew in the abdominal cavity of nude mice. Conversely, the expression of the transforming growth factor β (TGF-β)-signaling target mRNAs was higher in the formed tube vs the spherical structures, suggesting that TGF-β signaling is more active in the tube-forming process than the sphere-forming process. Treatment of sphere-forming clones with TGF-β1 induced tube-forming growth, upregulated the TGF-β-signaling target mRNAs, and yielded electron microscopic findings of a fading epithelial phenotype. In contrast, the elimination of TGF-β-signaling activation by treatment with inhibitors diminished the tube-forming growth and suppressed the expression of the TGF-β-signaling target mRNAs. Moreover, upregulation of the Fn1, Mmp2, and Snai1 mRNAs, which are hallmarks of tube-forming growth in PDAC, was demonstrated in a mouse model of carcinogenesis showing rapid progression because of the aggressive invasion of tube-forming cancer. Our study suggests that the tube-forming growth of PDAC relies on the activation of TGF-β signaling and highlights the importance of the formation of tube structures. Topics: Animals; Benzamides; Carcinogenesis; Carcinoma, Pancreatic Ductal; Cell Culture Techniques; Cell Line, Tumor; Dioxoles; Disease Models, Animal; Humans; Mice; Mice, Transgenic; Pancreatic Neoplasms; Pyrazoles; Pyrroles; Recombinant Proteins; RNA-Seq; Signal Transduction; Spheroids, Cellular; Transforming Growth Factor beta1 | 2019 |
Validated RP-HPLC method for the simultaneous analysis of gemcitabine and LY-364947 in liposomal formulations.
Combined use of gemcitabine (Gem) and LY-364947 (LY), a TGF-β1 receptor inhibitor, has shown promise for the treatment of fibrotic pancreatic cancer, by reducing collagen production and improving tumor drug penetration. The preparation and optimization of novel Gem and LY formulations, including co-encapsulation in liposomes, require a validated method for the simultaneous quantification of both drugs, a method that had yet to be developed. Here we demonstrate an RP-HPLC protocol for the simultaneous detection of Gem and LY at 266 and 228 nm with retention times of 3.37 and 11.34 mins, respectively. The method, which uses a C18 column and a KH2PO4 (10 mM)-methanol mobile phase, was validated for linearity, precision, accuracy, limits of detection, and robustness. Co-loaded liposomes with both Gem and LY (Gem/LY liposomes) were developed to investigate the protocol applicability to pharmacokinetic analysis and formulation characterization. The method specificity was evaluated in presence of liposomal components in fetal bovine serum (FBS). Finally, the method was demonstrated by quantifying Gem/LY liposomal encapsulation efficiency and concentration liposomes-spiked FBS. Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Cattle; Chemistry, Pharmaceutical; Chromatography, High Pressure Liquid; Deoxycytidine; Drug Stability; Gemcitabine; Liposomes; Pancreatic Neoplasms; Pyrazoles; Pyrroles | 2013 |
Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size.
A major goal in cancer research is to develop carriers that can deliver drugs effectively and without side effects. Liposomal and particulate carriers with diameters of ∼100 nm have been widely used to improve the distribution and tumour accumulation of cancer drugs, but so far they have only been effective for treating highly permeable tumours. Here, we compare the accumulation and effectiveness of different sizes of long-circulating, drug-loaded polymeric micelles (with diameters of 30, 50, 70 and 100 nm) in both highly and poorly permeable tumours. All the polymer micelles penetrated highly permeable tumours in mice, but only the 30 nm micelles could penetrate poorly permeable pancreatic tumours to achieve an antitumour effect. We also showed that the penetration and efficacy of the larger micelles could be enhanced by using a transforming growth factor-β inhibitor to increase the permeability of the tumours. Topics: Animals; Antineoplastic Agents; Drug Carriers; Humans; Liposomes; Mice; Mice, Inbred BALB C; Micelles; Organoplatinum Compounds; Pancreatic Neoplasms; Particle Size; Permeability; Polyethylene Glycols; Pyrazoles; Pyrroles; Transforming Growth Factor beta | 2011 |