homoserine lactone has been researched along with Infections, Pseudomonas in 30 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (3.33) | 18.2507 |
2000's | 20 (66.67) | 29.6817 |
2010's | 8 (26.67) | 24.3611 |
2020's | 1 (3.33) | 2.80 |
Authors | Studies |
---|---|
Agarwal, V; Kushwaha, A; Verma, RS | 1 |
Coenye, T; Crabbé, A; Dandekar, AA; Lemarcq, A; Sass, A; Vandeplassche, E | 1 |
Bassler, BL; Goldberg, JB; Moustafa, D; Mukherjee, S; Smith, CD | 1 |
Biswas, R; Chatterjee, M; D'Morris, S; Mohan, CG; Nair, SS; Paul, V; Paul-Prasanth, B; Vanuopadath, M; Vasudevan, AK; Warrier, S | 1 |
Alhede, M; Bjarnsholt, T; Givskov, M; Hultqvist, LD; Jakobsen, TH | 1 |
Broadbent, I; Charlton, K; Downham, C; Palliyil, S; Porter, AJ | 1 |
Alexandar, V; Chhibber, S; Harjai, K; Vadekeetil, A | 1 |
Conibear, TCR; Givskov, M; Hume, EBH; Kjelleberg, S; Rice, SA; Willcox, MDP; Zhu, H | 1 |
Høiby, N; Kong, KF; Maricic, N; Mathee, K; Priestap, H; Quirke, JM; Ramalingam, B; Schneper, L; Song, Z; Wu, H | 1 |
Arant, RJ; Foskett, JK; Hofer, AM; Ianowski, JP; Illek, B; Isacoff, E; Machen, TE; Maiellaro, I; Matthes, E; Schwarzer, C; Shi, J; Vais, H; Wong, S | 1 |
Lewenza, S; Sokol, PA; Visser, MB | 1 |
Tateda, K | 1 |
Carty, NL; Cheluvappa, R; Graham, ED; Griswold, JA; Hamood, AN; McDonald, NA; Schaber, JA | 1 |
Eberl, L; Tümmler, B | 1 |
Anguige, K; King, JR; Ward, JP; Williams, P | 1 |
Ishii, Y; Tateda, K; Yamaguchi, K | 1 |
Aendekerk, S; Cámara, M; Cornelis, P; Diggle, SP; Høiby, N; Song, Z; Williams, P | 1 |
Chun, C; Furlong, C; Greenberg, EP; Lusis, AJ; Ozer, EA; Pezzulo, A; Shih, DM; Zabner, J | 1 |
Chole, RA; Jung, JY; Nason, R; Pashia, ME; Scholnick, S; Wang, EW | 1 |
Dénervaud, V; Haas, D; Heurlier, K | 1 |
Fuse, ET; Horikawa, M; Ishiguro, M; Ishii, Y; Miyairi, S; Saito, H; Standiford, TJ; Takabatake, T; Tateda, K; Ueda, C; Yamaguchi, K | 1 |
Yamaguchi, K | 1 |
Bjarnsholt, T; Givskov, M | 1 |
Bazzo, R; Bottomley, MJ; Carfì, A; Muraglia, E | 1 |
Ader, F; Courcol, R; Faure, K; Guery, BP; Kipnis, E; Le Berre, R; Nguyen, S; Nowak, E; Pierre, M | 1 |
Bycroft, BW; Finch, RG; Pritchard, DI; Stewart, GS; Williams, P | 1 |
Eberl, L; Geisenberger, O; Givskov, M; Høiby, N; Riedel, K; Tümmler, B | 1 |
Andersen, JB; Eberl, L; Givskov, M; Hentzer, M; Heydorn, A; Høiby, N; Mathee, K; Molin, S; Moser, C; Song, Z; Wu, H | 1 |
Greenberg, EP; Moninger, TO; Parsek, MR; Schaefer, AL; Singh, PK; Welsh, MJ | 1 |
Cámara, M; Hardman, A; Knox, AJ; Middleton, B; Rodgers, HC; Williams, P | 1 |
8 review(s) available for homoserine lactone and Infections, Pseudomonas
Article | Year |
---|---|
Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis.
Topics: 4-Butyrolactone; Cystic Fibrosis; Gene Expression Regulation, Bacterial; Humans; Keratitis; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Virulence; Virulence Factors | 2008 |
[Quorum-sensing systems in bacteria].
Topics: 4-Butyrolactone; Animals; Anti-Bacterial Agents; Bacterial Physiological Phenomena; Biofilms; Drug Design; Gene Expression Regulation, Bacterial; Genes, Bacterial; Humans; Macrolides; Pseudomonas aeruginosa; Pseudomonas Infections; Signal Transduction; Vibrio; Virulence | 2003 |
Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation.
Topics: 4-Butyrolactone; Adaptation, Physiological; Biofilms; Burkholderia cepacia; Burkholderia Infections; Cystic Fibrosis; Evolution, Molecular; Gene Expression Regulation, Bacterial; Gene Transfer, Horizontal; Genome, Bacterial; Genomic Islands; Humans; Lung; Pseudomonas aeruginosa; Pseudomonas Infections; Recombination, Genetic; Signal Transduction; Virulence Factors | 2004 |
[Quorum-sensing system of Pseudomonas aeruginosa--a novel target for antibacterial agents].
Topics: 4-Butyrolactone; Anti-Bacterial Agents; Biofilms; Cytokines; Drug Design; Humans; Macrolides; Pseudomonas aeruginosa; Pseudomonas Infections; Signal Transduction; Virulence | 2004 |
Impact of quorum sensing on fitness of Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Bacterial Proteins; Cell Communication; Deoxyadenosines; DNA-Binding Proteins; Humans; Pseudomonas aeruginosa; Pseudomonas Infections; Thionucleosides; Trans-Activators; Virulence | 2006 |
[New developments in therapeutics for infectious diseases].
Topics: 4-Butyrolactone; Adjuvants, Immunologic; Animals; Anti-Bacterial Agents; Apoptosis; Cytokines; Disease Models, Animal; Galactosylceramides; Humans; Immunity, Cellular; Killer Cells, Natural; Legionnaires' Disease; Macrolides; Pneumonia, Pneumococcal; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Th1 Cells; Vaccines | 2006 |
Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens.
Topics: 4-Butyrolactone; Anti-Bacterial Agents; Biofilms; Cystic Fibrosis; Humans; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Virulence | 2007 |
Quorum sensing: a novel target for anti-infective therapy.
Topics: 4-Butyrolactone; Anti-Bacterial Agents; Gene Expression Regulation, Bacterial; Humans; Pseudomonas aeruginosa; Pseudomonas Infections; Signal Transduction; Virulence | 1998 |
22 other study(ies) available for homoserine lactone and Infections, Pseudomonas
Article | Year |
---|---|
Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone induces calcium signaling-dependent crosstalk between autophagy and apoptosis in human macrophages.
Topics: 4-Butyrolactone; Apoptosis; Autophagy; Beclin-1; Calcium; Calcium Signaling; Chelating Agents; Chloroquine; Egtazic Acid; Homoserine; Humans; Macrophages; Phosphatidylserines; Protein Kinases; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Reactive Oxygen Species; Sirolimus; Virulence Factors | 2022 |
In vitro evolution of Pseudomonas aeruginosa AA2 biofilms in the presence of cystic fibrosis lung microbiome members.
Topics: 4-Butyrolactone; Adaptation, Physiological; Bacterial Proteins; Biofilms; Cystic Fibrosis; Drug Resistance, Bacterial; Humans; Lung; Microbiota; Mutation; Peptide Hydrolases; Phenotype; Pseudomonas aeruginosa; Pseudomonas Infections; Pyocyanine; Quorum Sensing; Virulence Factors | 2019 |
The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer.
Topics: 4-Butyrolactone; Animals; Bacterial Proteins; Biofilms; Female; Gene Expression Regulation, Bacterial; Humans; Mice; Mice, Inbred BALB C; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Regulon; Virulence | 2017 |
Mechanistic understanding of Phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Animals; Anti-Bacterial Agents; Biofilms; Catheters; Computer Simulation; Disease Models, Animal; Gene Expression; Genetic Complementation Test; Lactates; Lactobacillus; Oryzias; Pseudomonas aeruginosa; Pseudomonas Infections; Pyocyanine; Quorum Sensing; Virulence Factors | 2017 |
Imaging N-Acyl Homoserine Lactone Quorum Sensing In Vivo.
Topics: 4-Butyrolactone; Alginates; Animals; Female; Glucuronic Acid; Hexuronic Acids; Imaging, Three-Dimensional; Mice, Inbred BALB C; Microspheres; Microtomy; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing | 2018 |
High-sensitivity monoclonal antibodies specific for homoserine lactones protect mice from lethal Pseudomonas aeruginosa infections.
Topics: 4-Butyrolactone; Animals; Antibodies, Monoclonal; Caenorhabditis elegans; Cross Reactions; Immune Sera; Mice; Mice, Inbred Strains; Pancreatic Elastase; Peptide Library; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Sheep | 2014 |
Adjuvant effect of cranberry proanthocyanidin active fraction on antivirulent property of ciprofloxacin against Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Acyl-Butyrolactones; Adjuvants, Pharmaceutic; Anti-Bacterial Agents; Biofilms; Ciprofloxacin; Drug Synergism; Microbial Sensitivity Tests; Molecular Docking Simulation; Plant Extracts; Proanthocyanidins; Pseudomonas aeruginosa; Pseudomonas Infections; Quinolones; Quorum Sensing; Vaccinium macrocarpon; Virulence | 2016 |
Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection.
Topics: 4-Butyrolactone; Alginates; Anti-Infective Agents; Bacterial Proteins; Chromatography, High Pressure Liquid; Down-Regulation; Glucuronic Acid; Hexuronic Acids; Metalloendopeptidases; Panax; Phytotherapy; Plant Extracts; Pseudomonas aeruginosa; Pseudomonas Infections; Signal Transduction; Virulence; Virulence Factors | 2010 |
Pseudomonas aeruginosa Homoserine lactone activates store-operated cAMP and cystic fibrosis transmembrane regulator-dependent Cl- secretion by human airway epithelia.
Topics: 4-Butyrolactone; Anions; Calcium; Calcium Signaling; Cell Line, Transformed; Chlorides; Cyclic AMP; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Enzyme Inhibitors; Gene Expression Regulation; Humans; Inositol 1,4,5-Trisphosphate Receptors; Membrane Proteins; Neoplasm Proteins; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Respiratory Mucosa; Stromal Interaction Molecule 1 | 2010 |
Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Bacterial Proteins; Burkholderia cepacia; Burkholderia Infections; Humans; Lac Operon; Ligases; Mutation; Pseudomonas aeruginosa; Pseudomonas Infections; Transcription Factors; Virulence Factors | 2002 |
Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Bacterial Proteins; Biofilms; Gene Expression Regulation, Bacterial; Humans; Metalloendopeptidases; Mutation; Pseudomonas aeruginosa; Pseudomonas Infections; Transcription, Genetic; Virulence | 2004 |
Mathematical modelling of therapies targeted at bacterial quorum sensing.
Topics: 4-Butyrolactone; Algorithms; Anti-Bacterial Agents; Bacterial Proteins; Cell Division; DNA-Binding Proteins; Humans; Kinetics; Models, Biological; Pseudomonas aeruginosa; Pseudomonas Infections; RNA, Messenger; Trans-Activators | 2004 |
The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication.
Topics: 4-Butyrolactone; 4-Quinolones; Animals; Bacterial Outer Membrane Proteins; Base Sequence; DNA, Bacterial; Drug Resistance, Multiple, Bacterial; Female; Gene Expression; Genes, Bacterial; Lactuca; Membrane Transport Proteins; Mutation; Phenotype; Plant Diseases; Pseudomonas aeruginosa; Pseudomonas Infections; Quinolones; Rats; Rats, Inbred Lew; Signal Transduction; Virulence | 2005 |
Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing.
Topics: 4-Butyrolactone; Animals; Aryldialkylphosphatase; Biofilms; Genes, Bacterial; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Peritonitis; Pseudomonas aeruginosa; Pseudomonas Infections; Sepsis; Signal Transduction | 2005 |
Otopathogenic Pseudomonas aeruginosa strains as competent biofilm formers.
Topics: 4-Butyrolactone; Bacterial Adhesion; Biofilms; Cell Adhesion; Cholesteatoma; Cystic Fibrosis; Gene Expression Regulation, Bacterial; Humans; Keratinocytes; Microbial Sensitivity Tests; Pneumonia; Pseudomonas aeruginosa; Pseudomonas Infections; Reverse Transcriptase Polymerase Chain Reaction | 2005 |
Immunization with 3-oxododecanoyl-L-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection.
Topics: 4-Butyrolactone; Animals; Antibodies, Bacterial; Apoptosis; Cell Line; Colony Count, Microbial; Homoserine; Immune Sera; Injections, Subcutaneous; Lung; Macrophages; Mice; Mice, Inbred BALB C; Pneumonia, Bacterial; Pseudomonas aeruginosa; Pseudomonas Infections; Serum Albumin, Bovine; Tumor Necrosis Factor-alpha; Vaccination; Vaccines, Conjugate; Vaccines, Synthetic | 2006 |
Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer.
Topics: 4-Butyrolactone; Bacterial Proteins; Crystallography, X-Ray; Cystic Fibrosis; DNA-Binding Proteins; Escherichia coli Proteins; Humans; Lactones; Opportunistic Infections; Protein Structure, Tertiary; Pseudomonas aeruginosa; Pseudomonas Infections; Quorum Sensing; Structural Homology, Protein; Trans-Activators; Virulence Factors | 2007 |
Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Bacterial Proteins; Gene Expression Regulation, Bacterial; Humans; Pancreatic Elastase; Pneumonia, Ventilator-Associated; Pseudomonas aeruginosa; Pseudomonas Infections; Pyocyanine; Quorum Sensing; Virulence Factors | 2008 |
Production of N-acyl-L-homoserine lactones by P. aeruginosa isolates from chronic lung infections associated with cystic fibrosis.
Topics: 4-Butyrolactone; Burkholderia cepacia; Burkholderia Infections; Chromatography, Thin Layer; Chronic Disease; Cystic Fibrosis; Gene Expression Regulation, Bacterial; Humans; Lung Diseases; Pseudomonas aeruginosa; Pseudomonas Infections; Signal Transduction | 2000 |
Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa.
Topics: 4-Butyrolactone; Animals; Cystic Fibrosis; Disease Models, Animal; Gene Expression Regulation, Bacterial; Green Fluorescent Proteins; Humans; Luminescent Proteins; Lung; Mice; Mice, Inbred CBA; Pseudomonas aeruginosa; Pseudomonas Infections; Signal Transduction | 2000 |
Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms.
Topics: 4-Butyrolactone; Biofilms; Cystic Fibrosis; Gene Expression Regulation, Bacterial; Lung; Mucus; Pseudomonas aeruginosa; Pseudomonas Infections; Signal Transduction; Sputum | 2000 |
Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum.
Topics: 4-Butyrolactone; Burkholderia cepacia; Burkholderia Infections; Cystic Fibrosis; Humans; Pseudomonas aeruginosa; Pseudomonas Infections; Signal Transduction; Sputum | 2002 |