homoharringtonine and Zika-Virus-Infection

homoharringtonine has been researched along with Zika-Virus-Infection* in 2 studies

Other Studies

2 other study(ies) available for homoharringtonine and Zika-Virus-Infection

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Cephalotaxine inhibits Zika infection by impeding viral replication and stability.
    Biochemical and biophysical research communications, 2020, 02-19, Volume: 522, Issue:4

    The Zika virus (ZIKV) is a mosquito-borne flavivirus that has reemerged as a serious public health problem around the world. Syndromes of infected people range from asymptomatic infections to severe neurological disorders, such as Guillain-Barré syndrome and microcephaly. Screening anti-ZIKV drugs derived from Chinese medicinal herbs is one method of identifying antiviral agents. In this paper, we report that (1) Cephalotaxine (CET), an alkaloid isolated from Cephalotaxus drupacea, was effective in inhibiting ZIKV activity in vitro (i.e., in Vero and A549 cell lines) and (2) the mechanisms which underlie these effects involve virucidal activity and a decrease in viral replication. Specifically, CET was found to decrease ZIKV RNA and viral protein expression, inhibit ZIKV replication, and inhibit ZIKV mRNA/protein production. We also determined that CET is effective in inhibiting dengue virus 1-4 (DENV1-4). Taken together, our findings indicate that CET could be an effective lead compound in the treatment of ZIKV and also suggest that further investigation and development of CET-derived drugs may lead to a new class of anti-Flavivirus medications.

    Topics: A549 Cells; Animals; Chlorocebus aethiops; Dengue Virus; Homoharringtonine; Humans; RNA Stability; RNA, Viral; Serotyping; Vero Cells; Virus Replication; Zika Virus Infection

2020