hispidulin has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for hispidulin and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Effect of Terpenoids and Flavonoids Isolated from
Topics: Animals; Anti-Inflammatory Agents; Baccharis; Disease Models, Animal; Ear Diseases; Edema; Flavones; Male; Mice; Mice, Inbred ICR; Terpenes; Tetradecanoylphorbol Acetate | 2020 |
Immunosuppressive effect of hispidulin in allergic contact dermatitis.
Long-term use of most immunosuppressants to treat allergic contact dermatitis (ACD) generates unavoidable severe side effects, warranting discovery or development of new immunosuppressants with good efficacy and low toxicity is urgently needed to treat this condition. Hispidulin, a flavonoid compound that can be delivered topically due to its favorable skin penetrability properties, has recently been reported to possess anti-inflammatory and immunosuppressive properties. However, no studies have investigated the effect of hispidulin on Th1 cell activities in an ACD setting.. A contact hypersensitivity (CHS) mouse model was designed to simulate human ACD. The immunosuppressive effect of hispidulin was investigated via ear thickness, histologic changes (i.e., edema and spongiosis), and interferon-gamma (IFN-γ) gene expression in 1-fluoro-2,4-dinitrobenzene (DNFB)-sensitized mice. Cytotoxicity, total number of CD4. Topically applied hispidulin effectively inhibited ear swelling (as measured by reduction in ear thickness), and reduced spongiosis, IFN-γ gene expression, and the number of infiltrated immune cells. The inhibitory effect of hispidulin was observed within 6 h after the challenge, and the observed effects were similar to those effectuated after dexamethasone administration. Hispidulin at a concentration up to 50 μM also suppressed IFN-γ-producing CD4. The results of this study, therefore, suggest hispidulin as a novel compound for the treatment of ACD via the suppression of IFN-γ production in Th1 cells. Topics: Animals; CD4-Positive T-Lymphocytes; Dermatitis, Allergic Contact; Disease Models, Animal; Flavones; Humans; Immunosuppressive Agents; Interferon-gamma; Lymphocyte Activation; Male; Mice; Mice, Inbred C57BL; Th1 Cells | 2019 |