hexarelin has been researched along with Myocardial-Infarction* in 5 studies
5 other study(ies) available for hexarelin and Myocardial-Infarction
Article | Year |
---|---|
Hexarelin targets neuroinflammatory pathways to preserve cardiac morphology and function in a mouse model of myocardial ischemia-reperfusion.
Acute myocardial ischemia and reperfusion injury (IRI) underly the detrimental effects of coronary heart disease on the myocardium. Despite the ongoing advances in reperfusion therapies, there remains a lack of effective therapeutic strategies for preventing IRI. Growth hormone secretagogues (GHS) have been demonstrated to improve cardiac function, attenuate inflammation and modulate the autonomic nervous system (ANS) in models of cardiovascular disease. Recently, we demonstrated a reduction in infarct size after administration of hexarelin (HEX), in a murine model of myocardial infarction. In the present study we employed a reperfused ischemic (IR) model, to determine whether HEX would continue to have a cardioprotective influence in a model of higher clinical relevance. Myocardial ischemia was induced by transient ligation of the left descending coronary artery (tLAD) in C57BL/6 J mice followed by HEX (0.3 mg/kg/day; n = 20) or vehicle (VEH) (n = 18) administration for 21 days, first administered immediately prior-to reperfusion. IR-injured and sham mice were subjected to high-field magnetic resonance imaging to assess left ventricular (LV) function, with HEX-treated mice demonstrating a significant improvement in LV function compared with VEH-treated mice. A significant decrease in interstitial collagen, TGF-β1 expression and myofibroblast differentiation was also seen in the HEX-treated mice after 21 days. HEX treatment shifted the ANS balance towards a parasympathetic predominance; combined with a significant decrease in cardiac troponin-I and TNF-α levels, these findings were suggestive of an anti-inflammatory action on the myocardium mediated via HEX. In this model of IR, HEX appeared to rebalance the deregulated ANS and activate vagal anti-inflammatory pathways to prevent adverse remodelling and LV dysfunction. There are limited interventions focusing on IRI that have been successful in improving clinical outcome in acute myocardial infarction (AMI) patients, this study provides compelling evidence towards the translational potential of HEX where all others have largely failed. Topics: Animals; Anti-Inflammatory Agents; Disease Models, Animal; Inflammation; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardial Reperfusion Injury; Oligopeptides; Troponin I; Ventricular Dysfunction, Left; Ventricular Function, Left | 2020 |
Hexarelin treatment preserves myocardial function and reduces cardiac fibrosis in a mouse model of acute myocardial infarction.
Ischemic heart disease (IHD) is a leading cause of morbidity and mortality worldwide. Growth hormone secretagogues (GHS) have been shown to improve cardiac function in models of IHD. This study determined whether hexarelin (HEX), a synthetic GHS, preserves cardiac function and morphology in a mouse model of myocardial infarction (MI). MI was induced by ligation of the left descending coronary artery in C57BL/6J mice followed by vehicle (VEH; n = 10) or HEX (0.3 mg/kg/day; n = 11) administration for 21 days. MI-injured and sham mice (treated with VEH; n = 6 or HEX; n = 5) underwent magnetic resonance imaging for measurement of left ventricular (LV) function, mass and infarct size at 24 h and 14 days post-MI. MI-HEX mice displayed a significant improvement (P < 0.05) in LV function compared with MI-VEH mice after 14 days treatment. A significant decrease in LV mass, interstitial collagen and collagen concentration was demonstrated with chronic HEX treatment (for 21 days), accompanied by a decrease in TGF-β1 expression, myofibroblast differentiation and an increase in collagen-degrading MMP-13 expression levels. Furthermore, heart rate variability analysis demonstrated that HEX treatment shifted the balance of autonomic nervous activity toward a parasympathetic predominance and sympathetic downregulation. This was combined with a HEX-dependent decrease in troponin-I, IL-1β and TNF-α levels suggestive of amelioration of cardiomyocyte injury. These results demonstrate that GHS may preserve ventricular function, reduce inflammation and favorably remodel the process of fibrotic healing in a mouse model of MI and hold the potential for translational application to patients suffering from MI. Topics: Animals; Blood Pressure; Disease Models, Animal; Fibrosis; Heart; Inflammation; Male; Mice, Inbred C57BL; Myocardial Infarction; Myocardium; Oligopeptides; Ventricular Remodeling | 2018 |
One dose of oral hexarelin protects chronic cardiac function after myocardial infarction.
Both hexarelin and its natural analog ghrelin exert comparable cardioprotective activities. A single dose of ghrelin administered at the very acute phase after experimental myocardial infarction positively affects cardiac function in chronic heart failure. Therefore, this study aimed to determine whether a single dose of oral hexarelin has the same effect in the chronic disease phase. Myocardial infarction or sham operation was generated by left coronary artery ligation in male C57BL/6J mice, which subsequently received one dose of hexarelin or vehicle treatment by oral gavage 30 min after operation. Although the mortality within 14 days after myocardial infarction did not differ between the groups, hexarelin treatment protected cardiac function in the chronic phase as evidenced by higher ejection fraction and fractional shortening, as well as lower lung weight/body weight and lung weight/tibial length ratios, compared with vehicle treatment. Hexarelin treatment concurrently lowered plasma epinephrine and dopamine levels, and shifted the balance of autonomic nervous activity toward parasympathetic nervous activity as evidenced by a smaller low/high-frequency power ratio and larger normalized high-frequency power on heart rate variability analysis. The results first demonstrate that one dose of oral hexarelin treatment potentially protects chronic cardiac function after acute myocardial infarction, and implicate that activating growth hormone secretagogue receptor 1a might be beneficial for cardioprotection, although other mechanism may also be involved. Topics: Administration, Oral; Animals; Dopamine; Epinephrine; Heart Rate; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Norepinephrine; Oligopeptides | 2014 |
Hexarelin treatment in male ghrelin knockout mice after myocardial infarction.
Both ghrelin and the synthetic analog hexarelin are reported to possess cardioprotective actions that are mainly exerted through different receptors. However, their effects on acute myocardial infarction have not been compared in vivo. This study aimed to clarify whether hexarelin treatment can compensate for ghrelin deficiency in ghrelin-knockout mice and to compare the effects of hexarelin (400 nmol/kg/d, sc) and equimolar ghrelin treatment after myocardial infarction. Myocardial infarction was produced by left coronary artery ligation in male ghrelin-knockout mice, which then received ghrelin, hexarelin, or vehicle treatment for 2 weeks. The mortality within 2 weeks was significantly lower in the hexarelin group (6.7%) and ghrelin group (14.3%) than in the vehicle group (50%) (P < .05). A comparison of cardiac function 2 weeks after infarction showed that in the ghrelin and hexarelin treatment groups, cardiac output was greater, whereas systolic function, represented by ejection fraction, and diastolic function, represented by dP/dt min (peak rate of pressure decline), were significantly superior compared with the vehicle group (P < .05). Hexarelin treatment was more effective than ghrelin treatment, as indicated by the ejection fraction, dP/dt max (peak rate of pressure rise), and dP/dt min. Telemetry recording and heart rate variability analysis demonstrated that sympathetic nervous activity was clearly suppressed in the hexarelin and ghrelin groups relative to the vehicle group. Our data demonstrated that hexarelin treatment can result in better heart function than ghrelin treatment 2 weeks after myocardial infarction in ghrelin-knockout mice, although both hormones have similar effects on heart rate variability and mortality. Topics: Acetylation; Animals; Cardiac Output; Cardiotonic Agents; Echocardiography; Ghrelin; Heart; Heart Rate; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Oligopeptides; Protein Stability; Stroke Volume; Survival Analysis; Sympathetic Nervous System | 2013 |
The growth hormone secretagogue hexarelin improves cardiac function in rats after experimental myocardial infarction.
Several studies have shown that GH can enhance cardiac performance in rats after experimental myocardial infarction and in humans with congestive heart failure. In the present study, the hemodynamic effects of hexarelin (Hex), an analog of GH-releasing peptide-6 and a potent GH secretagogue, were compared with the effects of GH. Four weeks after ligation of the left coronary artery male rats were treated sc twice daily with hexarelin [10 microg/kg x day (Hex10) or 100 microg/kg x day (Hex100)], recombinant human GH (2.5 mg/kg x day), or 0.9% NaCl for 2 weeks. Transthoracic echocardiography was performed before and after the treatment period. GH, but not Hex, increased body weight gain. GH and Hex100 decreased total peripheral resistance (P < 0.05) and increased stroke volume (P < 0.05 and P < 0.01, respectively) and stroke volume index (P = 0.06 and P < 0.01, respectively) vs. NaCl. Cardiac output was increased by GH and Hex100 (P < 0.05), and cardiac index was increased by Hex100 with a borderline significance for GH (P = 0.06). In conclusion, Hex improves cardiac function and decreases peripheral resistance to a similar extent as exogenous GH in rats postmyocardial infarction. The mechanisms of these effects are unclear; they could be mediated by GH or a direct effect of Hex on the cardiovascular system. Topics: Animals; Blood Pressure; Body Weight; Echocardiography, Doppler; Electrocardiography; Growth Substances; Heart; Hemodynamics; Humans; In Situ Hybridization; Insulin-Like Growth Factor I; Male; Myocardial Infarction; Myocardium; Oligopeptides; Organ Size; Rats; Rats, Sprague-Dawley; Recombinant Proteins; RNA, Messenger; Vascular Resistance | 2000 |