hexarelin has been researched along with Heart-Diseases* in 2 studies
1 review(s) available for hexarelin and Heart-Diseases
Article | Year |
---|---|
Growth hormone and the heart.
Impaired cardiovascular function has recently been demonstrated to potentially reduce life expectancy both in GH deficiency and excess. Experimental and clinical studies have supported the evidence that GH and IGF-I are implicated in cardiac development. In most patients with acromegaly a specific cardiomyopathy, characterized by myocardial hypertrophy with interstitial fibrosis, lympho-mononuclear infiltration and areas of monocyte necrosis, results in biventricular concentric hypertrophy. In contrast, patients with childhood or adulthood-onset GH deficiency (GHD) may suffer both from structural cardiac abnormalities, such as narrowing of cardiac walls, and functional impairment, that combine to reduce diastolic filling and impair left ventricular response to peak exercise. In addition, GHD patients may have an increase in vascular intima-media thickness and a higher occurrence of atheromatous plaques, that can further aggravate the haemodynamic conditions and contribute to increased cardiovascular and cerebrovascular risk. However, several lines of evidence have suggested that the cardiovascular abnormalities can be partially reversed by suppressing GH and IGF-I levels in acromegaly or after GH replacement therapy in GHD patients. Recently, much attention has been focussed on the ability of GH to increase cardiac mass suggesting its possible use in the treatment of chronic nonendocrine heart failure. In fact, GH administration can induce an improvement in haemodynamic and clinical status in some patients. Although these data need to be confirmed in more extensive studies, such promising results seem to open new perspectives for GH treatment in humans. Topics: Acromegaly; Adult; Animals; Case-Control Studies; Child; Female; Growth Hormone; Heart; Heart Diseases; Hemodynamics; Hormones; Humans; Insulin-Like Growth Factor I; Male; Middle Aged; Octreotide; Oligopeptides; Rats; Stroke Volume | 2001 |
1 other study(ies) available for hexarelin and Heart-Diseases
Article | Year |
---|---|
Chronic administration of hexarelin attenuates cardiac fibrosis in the spontaneously hypertensive rat.
Cardiac fibrosis is a hallmark of heart disease and plays a vital role in cardiac remodeling during heart diseases, including hypertensive heart disease. Hexarelin is one of a series of synthetic growth hormone secretagogues (GHSs) possessing a variety of cardiovascular effects via action on GHS receptors (GHS-Rs). However, the role of hexarelin in cardiac fibrosis in vivo has not yet been investigated. In the present study, spontaneously hypertensive rats (SHRs) were treated with hexarelin alone or in combination with a GHS-R antagonist for 5 wk from an age of 16 wk. Hexarelin treatment significantly reduced cardiac fibrosis in SHRs by decreasing interstitial and perivascular myocardial collagen deposition and myocardial hydroxyproline content and reducing mRNA and protein expression of collagen I and III in SHR hearts. Hexarelin treatment also increased matrix metalloproteinase (MMP)-2 and MMP-9 activities and decreased myocardial mRNA expression of tissue inhibitor of metalloproteinase (TIMP)-1 in SHRs. In addition, hexarelin treatment significantly attenuated left ventricular (LV) hypertrophy, LV diastolic dysfunction, and high blood pressure in SHRs. The effect of hexarelin on cardiac fibrosis, blood pressure, and cardiac function was mediated by its receptor, GHS-R, since a selective GHS-R antagonist abolished these effects and expression of GHS-Rs was upregulated by hexarelin treatment. In summary, our data demonstrate that hexarelin reduces cardiac fibrosis in SHRs, perhaps by decreasing collagen synthesis and accelerating collagen degradation via regulation of MMPs/TIMP. Hexarelin-reduced systolic blood pressure may also contribute to this reduced cardiac fibrosis in SHRs. The present findings provided novel insights and underscore the therapeutic potential of hexarelin as an antifibrotic agent for the treatment of cardiac fibrosis. Topics: Animals; Blood Pressure; Cardiovascular Agents; Collagen Type I; Collagen Type III; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Heart Diseases; Hydroxyproline; Hypertension; Hypertrophy, Left Ventricular; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Myocardium; Oligopeptides; Rats; Rats, Inbred SHR; Rats, Wistar; Receptors, Ghrelin; RNA, Messenger; Time Factors; Tissue Inhibitor of Metalloproteinase-1; Ventricular Dysfunction, Left; Ventricular Function, Left | 2012 |