hexahydrocurcumin has been researched along with Reperfusion-Injury* in 2 studies
2 other study(ies) available for hexahydrocurcumin and Reperfusion-Injury
Article | Year |
---|---|
Hexahydrocurcumin alleviated blood-brain barrier dysfunction in cerebral ischemia/reperfusion rats.
Hexahydrocurcumin (HHC), a major metabolite of curcumin, has been reported to have protective effects against ischemic and reperfusion damage. The goal of the present research was to examine whether HHC could alleviate brain damage and ameliorate functional outcomes by diminishing the blood-brain barrier (BBB) damage that follows cerebral ischemia/reperfusion.. Middle cerebral artery occlusion was induced for 2 h in rats followed by reperfusion. The rats were divided into three groups: sham-operated, vehicle-treated, and HHC-treated groups. At the onset of reperfusion, the rats were immediately intraperitoneally injected with 40 mg/kg HHC. At 48 h after reperfusion, the rats were evaluated for neurological deficits and TTC staining. At 24 h and 48 h after reperfusion, animals were sacrificed, and their brains were extracted.. Treatment with HHC reduced neurological scores, infarct volume, morphological changes, Evans blue leakage and immunoglobulin G extravasation. Moreover, HHC treatment reduced BBB damage and neutrophil infiltration, downregulated myeloperoxidase, ICAM-1, and VCAM-1, upregulated tight junction proteins (TJPs), and reduced aquaporin 4 expression and brain water content.. These results revealed that HHC treatment preserved the BBB from cerebral ischemia/reperfusion injury by regulating TJPs, attenuating neutrophil infiltration, and reducing brain edema formation. Topics: Animals; Aquaporin 4; Blood-Brain Barrier; Brain; Brain Edema; Brain Ischemia; Curcumin; Infarction; Infarction, Middle Cerebral Artery; Male; Rats; Rats, Wistar; Reperfusion Injury; Zonula Occludens-1 Protein | 2020 |
Hexahydrocurcumin protects against cerebral ischemia/reperfusion injury, attenuates inflammation, and improves antioxidant defenses in a rat stroke model.
The purpose of the present experiment was to investigate whether hexahydrocurcumin (HHC) attenuates brain damage and improves functional outcome via the activation of antioxidative activities, anti-inflammation, and anti-apoptosis following cerebral ischemia/reperfusion (I/R). In this study, rats with cerebral I/R injury were induced by a transient middle cerebral artery occlusion (MCAO) for 2 h, followed by reperfusion. The male Wistar rats were randomly divided into five groups, including the sham-operated, vehicle-treated, 10 mg/kg HHC-treated, 20 mg/kg HHC-treated, and 40 mg/kg HHC-treated I/R groups. The animals were immediately injected with HHC by an intraperitoneal administration at the onset of cerebral reperfusion. After 24 h of reperfusion, the rats were tested for neurological deficits, and the pathology of the brain was studied by 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin (H&E) staining, and terminal deoxynucleotidyltransferase UTP nick end labeling (TUNEL) staining. In addition, the brain tissues were prepared for protein extraction for Western blot analysis, a malondialdehyde (MDA) assay, a nitric oxide (NO) assay, a superoxide dismutase (SOD) assay, a glutathione (GSH) assay, and a glutathione peroxidase (GSH-Px) assay. The data revealed that the neurological deficit scores and the infarct volume were significantly reduced in the HHC-treated rats at all doses compared to the vehicle group. Treatment with HHC significantly attenuated oxidative stress and inflammation, with a decreased level of MDA and NO and a decreased expression of NF-κB (p65) and cyclooxygenase-2 (COX-2) in the I/R rats. HHC also evidently increased Nrf2 (nucleus) protein expression, heme oxygenase-1 (HO-1) protein expression, the antioxidative enzymes, and the superoxide dismutase (SOD) activity. Moreover, the HHC treatment also significantly decreased apoptosis, with a decrease in Bax and cleaved caspase-3 and an increase in Bcl-XL, which was in accordance with a decrease in the apoptotic neuronal cells. Therefore, the HHC treatment protects the brain from cerebral I/R injury by diminishing oxidative stress, inflammation, and apoptosis. The antioxidant properties of HHC may play an important role in improving functional outcomes and may offer significant neuroprotection against I/R damage. Topics: Animals; Antioxidants; Curcumin; Disease Models, Animal; Inflammation; Rats; Reperfusion Injury; Stroke | 2017 |