hes1-protein--human and Carcinoma--Merkel-Cell

hes1-protein--human has been researched along with Carcinoma--Merkel-Cell* in 2 studies

Other Studies

2 other study(ies) available for hes1-protein--human and Carcinoma--Merkel-Cell

ArticleYear
The HDAC inhibitor domatinostat induces type I interferon α in Merkel cell carcinoma by HES1 repression.
    Journal of cancer research and clinical oncology, 2023, Volume: 149, Issue:11

    Class I selective histone deacetylase inhibitors (HDACi) have been previously demonstrated to not only increase major histocompatibility complex class I surface expression in Merkel cell carcinoma (MCC) cells by restoring the antigen processing and presentation machinery, but also exert anti-tumoral effect by inducing apoptosis. Both phenomena could be due to induction of type I interferons (IFN), as has been described for HDACi. However, the mechanism of IFN induction under HDACi is not fully understood because the expression of IFNs is regulated by both activating and inhibitory signaling pathways. Our own preliminary observations suggest that this may be caused by suppression of HES1.. The effect of the class I selective HDACi domatinostat and IFNα on cell viability and the apoptosis of MCPyV-positive (WaGa, MKL-1) and -negative (UM-MCC 34) MCC cell lines, as well as, primary fibroblasts were assessed by colorimetric methods or measuring mitochondrial membrane potential and intracellular caspase-3/7, respectively. Next, the impact of domatinostat on IFNA and HES1 mRNA expression was measured by RT-qPCR; intracellular IFNα production was detected by flow cytometry. To confirm that the expression of IFNα induced by HDACi was due to the suppression of HES1, it was silenced by RNA interference and then mRNA expression of IFNA and IFN-stimulated genes was assessed.. Our studies show that the previously reported reduction in viability of MCC cell lines after inhibition of HDAC by domatinostat is accompanied by an increase in IFNα expression, both of mRNA and at the protein level. We confirmed that treatment of MCC cells with external IFNα inhibited their proliferation and induced apoptosis. Re-analysis of existing single-cell RNA sequencing data indicated that induction of IFNα by domatinostat occurs through repression of HES1, a transcriptional inhibitor of IFNA; this was confirmed by RT-qPCR. Finally, siRNA-mediated silencing of HES1 in the MCC cell line WaGa not only increased mRNA expression of IFNA and IFN-stimulated genes but also decreased cell viability.. Our results demonstrate that the direct anti-tumor effect of HDACi domatinostat on MCC cells is at least in part mediated via decreased HES1 expression allowing the induction of IFNα, which in turn causes apoptosis.

    Topics: Carcinoma, Merkel Cell; Cell Line, Tumor; Histone Deacetylase Inhibitors; Humans; Interferon Type I; RNA, Messenger; Skin Neoplasms; Transcription Factor HES-1

2023
Proneural and proneuroendocrine transcription factor expression in cutaneous mechanoreceptor (Merkel) cells and Merkel cell carcinoma.
    International journal of cancer, 2002, Sep-10, Volume: 101, Issue:2

    Merkel cells form part of the peripheral neuroendocrine system of the skin and act as mechanoreceptors in touch response. Merkel cell carcinoma (MCC) is a rare, aggressive disease with similarities to small cell lung cancer (SCLC), which is also of neuroendocrine origin. We previously identified a novel DNA binding protein complex specific for MCC suspension cell lines, termed Merkel nuclear factor (MNF) by its binding to the POU-IV family DNA binding consensus sequence. Here we report that MNF contains the POU-IV family member Brn-3c and that Brn-3c is expressed in normal Merkel cells. Additionally, Brn-3c protein reactivity is restricted to a subset of MCC biopsies and is not seen in biopsies revealing adherent, variant cell lines lacking neuroendocrine markers. Recently, proper development of murine Merkel cells was shown to require the proneural basic helix-loop-helix transcription factor, atonal family member, MATH1. We demonstrate a correlation between Brn-3c and HATH1 reactivity in MCC biopsies and cell lines with retention of neuroendocrine phenotype. In SCLC, the related basic helix-loop-helix transcription factor HASH1 is responsible for neuroendocrine phenotype, but HASH1 transcripts were not detected in MCC cell lines. We propose that HATH1 and Brn-3c may form a transcriptional hierarchy responsible for determining neuroendocrine phenotype in Merkel cells and that lack of Brn-3c and/or HATH1 in MCC may indicate a more aggressive disease requiring closer patient follow-up.

    Topics: Basic Helix-Loop-Helix Transcription Factors; Blotting, Western; Carcinoma, Merkel Cell; Cell Line; Cells, Cultured; DNA-Binding Proteins; Electrophoretic Mobility Shift Assay; Gene Expression Profiling; Homeodomain Proteins; Humans; Immunohistochemistry; Merkel Cells; Muscle Proteins; Phenotype; RNA, Messenger; Transcription Factor Brn-3A; Transcription Factor HES-1; Transcription Factors; Tumor Cells, Cultured

2002