herbimycin has been researched along with Glioblastoma* in 3 studies
3 other study(ies) available for herbimycin and Glioblastoma
Article | Year |
---|---|
Regulation of matrix metalloproteinase-2 (MMP-2) by hepatocyte growth factor/scatter factor (HGF/SF) in human glioma cells: HGF/SF enhances MMP-2 expression and activation accompanying up-regulation of membrane type-1 MMP.
Hepatocyte growth factor/scatter factor (HGF/SF) contributes to the malignant progression of human gliomas. We investigated the effect of HGF/SF on matrix metalloproteinase-2 (MMP-2), membrane type 1 matrix metalloproteinase (MT1-MMP) and tissue inhibitors of metalloproteinases (TIMPs), expressions of c-Met/HGF receptor-positive human glioblastoma cells. Treatment of U251 human glioblastoma cells with HGF/SF resulted in enhanced secretion of MMP-2 with an increased level of the active form. This was accompanied by enhanced expression (2.5-fold) of mRNA specific for MMP-2. The stimulatory effect of HGF/SF on MMP-2 expression did not occur in the presence of herbimycin A, a protein tyrosine kinase inhibitor. MT1 -MMP, a cell-surface activator of proMMP-2, was also up-regulated by HGF/SF in a dose-dependent manner. By contrast, the level of TIMP- 1 mRNAs was not altered significantly and that of TIMP-2 was reduced mildly by the HGF/SF treatment, suggesting that HGF/SF may eventually modulate a balance between MMP-2 and TIMPs in favor of the proteinase activity in the glioma cell microenvironment. HGF/SF also stimulated MMP-2 expression of other glioblastoma cell lines. Since glioblastomas frequently co-express HGF/SF and its receptor, our results suggest that HGF/SF might contribute to the invasiveness of glioblastoma cells through autocrine induction of MMP-2 expression and activation. Topics: Benzoquinones; Brain Neoplasms; Disease Progression; Enzyme Induction; Enzyme Inhibitors; Epidermal Growth Factor; Gelatinases; Gene Expression Regulation, Neoplastic; Glioblastoma; Glioma; Hepatocyte Growth Factor; Humans; Lactams, Macrocyclic; Matrix Metalloproteinase 2; Matrix Metalloproteinases, Membrane-Associated; Metalloendopeptidases; Neoplasm Invasiveness; Neoplasm Proteins; Protein-Tyrosine Kinases; Quinones; Recombinant Proteins; Rifabutin; RNA, Messenger; RNA, Neoplasm; Signal Transduction; Stimulation, Chemical; Tumor Cells, Cultured | 1999 |
A suppressive role of p125FAK protein tyrosine kinase in hydrogen peroxide-induced apoptosis of T98G cells.
Protein tyrosine phosphorylation was examined on a human glioblastoma cell line, T98G, after exposure to oxidative stress in vitro. Hydrogen peroxide (1 mM) markedly induced tyrosine phosphorylation of a 125 kDa protein at 30 min after stimulation. The 125-kDa molecule phosphorylated was revealed to be a focal adhesion kinase (FAK). Tyrosine phosphorylation of p125FAK continued at least up to 5 h, and decreased after 8 h concomitant with apoptosis. Tyrosine phosphorylation of p125FAK was blocked by herbimycin A, a potent inhibitor of protein tyrosine kinases, while apoptosis was accelerated. When T98G cells were incubated with FAK antisense oligonucleotide, apoptosis was also accelerated. These results suggest that tyrosine phosphorylation of p125FAK plays a suppressive role in hydrogen peroxide-induced apoptosis. Topics: Antibiotics, Antineoplastic; Apoptosis; Benzoquinones; Cell Adhesion Molecules; Focal Adhesion Kinase 1; Focal Adhesion Protein-Tyrosine Kinases; Glioblastoma; Humans; Hydrogen Peroxide; Lactams, Macrocyclic; Oligonucleotides, Antisense; Phosphorylation; Protein-Tyrosine Kinases; Quinones; Rifabutin; Thionucleotides; Tumor Cells, Cultured; Tyrosine | 1997 |
Role of protein kinase C activation in synthesis of complement components C2 and factor B in interferon-gamma-stimulated human fibroblasts, glioblastoma cell line A172 and monocytes.
The synthesis of C2 and factor B, the key components of complement system, is performed by various kinds of cells and is also up-regulated by interferon-gamma (IFN-gamma). By using human fibroblasts, human glioblastoma cell line A172 and monocytes, we investigated the signal-transduction mechanism for IFN-gamma-induced synthesis of C2 and factor B. The C2 and factor B synthesis induced by IFN-gamma in all three cell types was inhibited by a protein kinase C (PKC) inhibitor, 1-(5-isoquinolinyl-sulphonyl)-2-methylpiperazine (H-7). The depletion of PKC in these cell types after treatment with phorbol 12-myristate 13-acetate (PMA) resulted in inhibition of IFN-gamma-induced C2 production. In addition, IFN-gamma treatment elicited a decrease in cytoplasmic PKC in A172 cells, indicating that PKC is activated by IFN-gamma. These results suggest that PKC is crucial for IFN-gamma-induced C2 and factor B synthesis. Northern-blot analysis showed that the effects at H-7 were at least partly mediated by modulation of C2 and factor B mRNA abundance in A172 cells. Since treatment of fibroblasts and A172 cells with IFN-gamma had no effect on intracellular Ca2+ concentration, and since neither EGTA nor nifedipine inhibited C2 or factor B synthesis induced by IFN-gamma, we concluded that intracellular Ca2+ mobilization was not involved in the effect of IFN-gamma. In addition, genistein, herbimycin A and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulphonamide (W-7) had no inhibitory effect on IFN-gamma-mediated action in any of the three cell types, which suggests that IFN-gamma acts independently of tyrosine kinases and calmodulin-dependent protein kinases. Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Benzoquinones; Calcium; Cells, Cultured; Complement C2; Complement Factor B; Enzyme Activation; Fibroblasts; Genistein; Glioblastoma; Humans; Interferon gamma Receptor; Interferon-gamma; Isoflavones; Isoquinolines; Lactams, Macrocyclic; Monocytes; Piperazines; Protein Kinase C; Protein-Tyrosine Kinases; Quinones; Receptors, Interferon; Rifabutin; RNA, Messenger; Signal Transduction; Sulfonamides; Tetradecanoylphorbol Acetate; Up-Regulation | 1995 |