heparitin-sulfate and Swine-Diseases

heparitin-sulfate has been researched along with Swine-Diseases* in 2 studies

Other Studies

2 other study(ies) available for heparitin-sulfate and Swine-Diseases

ArticleYear
Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor.
    Archives of virology, 2015, Volume: 160, Issue:7

    It is well known that many viruses use heparan sulfate as the initial attachment factor. In the present study, we determined whether porcine epidemic diarrhea virus (PEDV), an emerging veterinary virus, infects Vero cells by attaching to heparan sulfate. Western blot analysis, real-time PCR, and plaque formation assay revealed that PEDV infection was inhibited when the virus was pretreated with heparin (an analogue of heparan sulfate). There was no inhibitory effect when the cells were pre-incubated with heparin. We next demonstrated that enzymatic removal of the highly sulfated domain of heparan sulfate by heparinase I treatment inhibited PEDV infection. We also confirmed that sodium chlorate, which interferes with heparan sulfate biosynthesis, also inhibited PEDV infection. Furthermore, we examined the effect of two heparin derivatives with different types of sulfation on PEDV infection. The data suggested de-N-sulfated heparin, but not N-acetyl-de-O-sulfated heparin, inhibits PEDV infection. In summary, our studies revealed that heparan sulfate acts as the attachment factor of PEDV in Vero cells.

    Topics: Animals; Chlorocebus aethiops; Coronavirus Infections; Heparitin Sulfate; Porcine epidemic diarrhea virus; Receptors, Virus; Swine; Swine Diseases; Vero Cells; Virus Attachment

2015
Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals.
    Journal of virology, 2003, Volume: 77, Issue:5

    Adaptation of field isolates of foot-and-mouth disease virus (FMDV) to grow in cells in culture can result in changes in viral properties that include acquisition of the ability to bind to cell surface heparan sulfate (HS). After 13 passages on BHK cells to produce a vaccine, a Cathay topotype isolate of FMDV serotype O from China (O/CHA/90) extended its cell culture host range and bound to heparin-Sepharose, although it did not require cell surface HS as a receptor molecule. To understand these phenomena, we constructed chimeric viruses by using a type A(12) infectious cDNA and the capsid protein-coding regions of O/CHA/90 and its cell culture-adapted derivative (vac-O/CHA/90). Using a set of viruses derived from these chimeras by exchanging portions of the capsid-coding regions, we discovered that a group of amino acid residues that surround the fivefold axis of the icosahedral virion determine host range in cell culture and influence pathogenicity in pigs. These residues included aromatic amino acids at positions 108 and 174 and positively charged residues at positions 83 and 172 in protein 1D. To test if these residues participated in non-integrin-dependent cell binding, the integrin-binding RGD sequence in protein 1D was changed to KGE in two different chimeras. Evaluation of these KGE viruses indicated that growth in cell culture was not dependent on HS. One of these viruses was tested in pigs, where it produced a mild disease and maintained its KGE sequence. These results are discussed in terms of receptor utilization and pathogenesis of this important pathogen.

    Topics: Amino Acid Sequence; Animals; Binding Sites; Capsid Proteins; Cell Line; China; Cricetinae; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Genetic Engineering; Heparitin Sulfate; Models, Molecular; Molecular Sequence Data; Oligopeptides; Recombinant Fusion Proteins; Sepharose; Swine; Swine Diseases; Virion

2003