heparitin-sulfate has been researched along with Pulmonary-Fibrosis* in 6 studies
1 review(s) available for heparitin-sulfate and Pulmonary-Fibrosis
Article | Year |
---|---|
[Morphology of basement membrane and associated matrix proteins in normal and pathological tissues].
Basement membranes (BM) are specialized structures of the extracellular matrix. Their composition is of particular importance for the maintenance of normal morphological and functional properties of a multitude of organs and tissue systems and it is thus required for regular homeostasis of body function. Generally, they possess three main functions, i.e. participation in the maintenance of tissue structure, control of fluid and substrate exchange, and regulation of cell growth and differentiation. BMs are made up by various components which are in part specifically localized within the BM zone, or which represent ubiquitous matrix constituents with specific quantitative and/or qualitative differences in their localization. On the basis of a thorough immunohistochemical analysis of normal and diseased tissues, we provide here a concept of "functional morphology/pathomorphology" of the different BM components analyzed: 1.) The ubiquitous BM-constituent collagen IV primarily stabilizes the BM-zone and thus represents the "backbone" of the BM providing mechanical strength. Its loss leads to cystic tissue transformation as it is evidenced from the analysis of polycystic nephropathies. Thus, in other cystic tissue transformations a similar formal pathogenesis may be present. 2.) The specific localization of collagen VII as the main structural component of anchoring fibrils underlines the mechanical anchoring function of this collagenous protein. Defects in this protein lead to hereditary epidermolysis. The rapid re-occurrence of epidermal collagen VII during normal human wound healing indicates a quick reconstitution of the mechanical tensile strength of healing wounds. 3.) The BM-specific heparan sulfate proteoglycan (HSPG, Perlecan) with its highly negative anionic charge can be assumed to exert filter control. This assumption is corroborated by the localizatory findings of a preferential deposition of HSPG in endothelial and particularly in glomerular BM. Similarly, the lack of HSPG in the BM of lymph capillaries can be regarded as the correlate for a free fluid influx into lymphatic capillaries. The relative reduction in HSPG-staining in the developing glomerular BM also explains the still immature filter function. Furthermore, the low content of HSPG in placental chorionic capillaries can be regarded as morphological correlate for the required free fluid exchange between maternal and fetal blood systems. In diabetic glomerulopathy, the loss of HSPG coincid Topics: Animals; Basement Membrane; Collagen; Diabetic Nephropathies; Extracellular Matrix Proteins; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Humans; Immunohistochemistry; Kidney Diseases; Neoplasms; Proteoglycans; Pulmonary Fibrosis; Wound Healing | 1995 |
5 other study(ies) available for heparitin-sulfate and Pulmonary-Fibrosis
Article | Year |
---|---|
Pingyangmycin inhibits glycosaminoglycan sulphation in both cancer cells and tumour tissues.
Pingyangmycin is a clinically used anticancer drug and induces lung fibrosis in certain cancer patients. We previously reported that the negatively charged cell surface glycosaminoglycans are involved in the cellular uptake of the positively charged pingyangmycin. However, it is unknown if pingyangmycin affects glycosaminoglycan structures. Seven cell lines and a Lewis lung carcinoma-injected C57BL/6 mouse model were used to understand the cytotoxicity of pingyangmycin and its effect on glycosaminoglycan biosynthesis. Stable isotope labelling coupled with LC/MS method was used to quantify glycosaminoglycan disaccharide compositions from pingyangmycin-treated and untreated cell and tumour samples. Pingyangmycin reduced both chondroitin sulphate and heparan sulphate sulphation in cancer cells and in tumours. The effect was persistent at different pingyangmycin concentrations and at different exposure times. Moreover, the cytotoxicity of pingyangmycin was decreased in the presence of soluble glycosaminoglycans, in the glycosaminoglycan-deficient cell line CHO745, and in the presence of chlorate. A flow cytometry-based cell surface FGF/FGFR/glycosaminoglycan binding assay also showed that pingyangmycin changed cell surface glycosaminoglycan structures. Changes in the structures of glycosaminoglycans may be related to fibrosis induced by pingyangmycin in certain cancer patients. Topics: A549 Cells; Animals; Antibiotics, Antineoplastic; Bleomycin; Cell Line, Tumor; CHO Cells; Chondroitin Sulfates; Cricetulus; Glycosaminoglycans; HCT116 Cells; Heparitin Sulfate; HT29 Cells; Humans; Mass Spectrometry; Mice; Mice, Inbred C57BL; Neoplasms; Pulmonary Fibrosis | 2020 |
A single injection of bleomycin reduces glycosaminoglycan sulfation up to 30 days in the C57BL/6 mouse model of lung fibrosis.
Bleomycin is a clinically used anticancer drug, but it induces lung fibrosis in certain cancer patients with unknown mechanism. Glycosaminoglycans (GAGs) are required for lung morphogenesis during animal development. In current study, GAG disaccharides including heparan sulfate (HS) and chondroitin sulfate (CS) from bleomycin-induced and control lung tissues in lung fibrosis mouse model were tagged with 1-phenyl-3-methyl-5-pyrazolone (PMP) and deuterated PMP, respectively. The differentially isotope-tagged disaccharides were quantitatively compared by LC-MS. At day 10, the amount of CS disaccharides (U0a0, U0a6, and U0a4) and non-sulfated HS disaccharide (U0A0) were increased by 1.3-, 1.6-, 11.7-, and 2.2-fold, respectively, whereas the amount of CS disaccharide (U0a2), hyaluranan disaccharide (UβA0), and six HS disaccharides (U0A6, U2A0, U0H6, U0S0, U2S0, and U2S6) were decreased from1.1- to 14.3-fold compared to that of the controls. At day 15, under-sulfation of both HS and CS disaccharides was persisted. At day 30, the CS disaccharide compositions were recovered to that of the control levels whereas the HS were still remarkably under-sulfated. In conclusion, GAGs, especially HS, from fibrotic lungs induced by a single injection of bleomycin were significantly under-sulfated up to 30 days, suggesting GAGs might be another class of defective signaling molecules involved in bleomycin-induced lung fibrosis. Topics: Animals; Bleomycin; Chondroitin Sulfates; Chromatography, Liquid; Disaccharides; Female; Glycosaminoglycans; Heparitin Sulfate; Lung; Mass Spectrometry; Mice; Mice, Inbred C57BL; Pulmonary Fibrosis | 2020 |
Extracellular superoxide dismutase protects against matrix degradation of heparan sulfate in the lung.
Asbestosis is a form of interstitial lung disease caused by the inhalation of asbestos fibers, leading to inflammation and pulmonary fibrosis. Inflammation and oxidant/antioxidant imbalances are known to contribute to the disease pathogenesis. Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that has been shown to protect the lung from oxidant-mediated damage, inflammation, and interstitial fibrosis. Extracellular matrix (ECM) components, such as collagen and glycosaminoglycans, are known to be sensitive to oxidative fragmentation. Heparan sulfate, a glycosaminoglycan, is highly abundant in the ECM and tightly binds EC-SOD. We investigated the protective role of EC-SOD by evaluating the interaction of EC-SOD with heparan sulfate in the presence of reactive oxygen species (ROS). We found that ROS-induced heparin and heparan sulfate fragments induced neutrophil chemotaxis across a modified Boyden chamber, which was inhibited by the presence of EC-SOD by scavenging oxygen radicals. Chemotaxis in response to oxidatively fragmented heparin was mediated by Toll-like receptor-4. In vivo, bronchoalveolar lavage fluid from EC-SOD knockout mice at 1, 14, and 28 days after asbestos exposure showed increased heparan sulfate shedding from the lung parenchyma. We demonstrate that one mechanism through which EC-SOD inhibits lung inflammation and fibrosis in asbestosis is by protecting heparin/heparan sulfate from oxidative fragmentation. Topics: Animals; Asbestosis; Chemotaxis, Leukocyte; Disease Models, Animal; Extracellular Matrix; Heparin; Heparitin Sulfate; Humans; Lung; Mice; Mice, Inbred C57BL; Neutrophils; Pulmonary Fibrosis; Superoxide Dismutase; Superoxides | 2008 |
Glycosaminoglycan synthesis in explants derived from bleomycin-treated fibrotic hamster lungs.
Glycosaminoglycan synthesis was studied in explant cultures of hamster lungs 15 and 45 days following intratracheal administration of Bleomycin. At both time points, a statistically significant increase in 35S-sulfate incorporation into glycosaminoglycans was seen in the Bleomycin-treated explants compared with that of the controls. Furthermore, the percentage of label associated with dermatan sulfate was significantly higher in the treated explants than in controls at both 15 and 45 days. Conversely, the percentage of labeled heparin and/or heparan sulfate was significantly lower for the treated explants compared to controls at these times. These results indicate that glycosaminoglycan synthesis is altered from normal in this model of interstitial lung disease. Comparison of these data with previous measurements of glycosaminoglycan synthesis in another model of interstitial lung disease, induced by N-nitroso-N-methylurethane, reveals marked similarity in the changes from normal in 35S-labeling. Topics: Animals; Bleomycin; Cricetinae; Culture Techniques; Dermatan Sulfate; Female; Glycosaminoglycans; Heparin; Heparitin Sulfate; Pulmonary Fibrosis; Sulfates | 1983 |
Glycosaminoglycan and collagen synthesis in N-nitroso-N-methylurethane induced pulmonary fibrosis.
Topics: Animals; Chondroitin Sulfates; Collagen; Cricetinae; Dermatan Sulfate; Female; Glycosaminoglycans; Heparitin Sulfate; Lung; Mesocricetus; Nitrosomethylurethane; Organ Size; Pulmonary Fibrosis | 1980 |