heparitin-sulfate has been researched along with Parkinson-Disease* in 6 studies
2 review(s) available for heparitin-sulfate and Parkinson-Disease
Article | Year |
---|---|
The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration.
Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of β-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process. In vitro, they trigger misfolding, oligomerization, and fibrillation of amyloidogenic proteins, such as Aβ, tau, α-synuclein, prion protein, etc. They participate in the stabilization of protein aggregates, protect them from proteolysis, and act as cell-surface receptors for the cellular uptake of proteopathic seeds during their spreading. This review focuses attention on the importance of heparan sulfates in protein aggregation in brain disorders including Alzheimer's, Parkinson's, and prion diseases. The presence of these sulfated polysaccharides in protein inclusions in vivo and their capacity to trigger protein aggregation in vitro strongly suggest that they might play critical roles in the neurodegenerative process. Further advances in glyco-neurobiology will improve our understanding of the molecular and cellular mechanisms leading to protein aggregation and neurodegeneration. Topics: alpha-Synuclein; Alzheimer Disease; Amyloid; Heparitin Sulfate; Humans; Models, Chemical; Parkinson Disease; Prion Diseases; Prion Proteins; Protein Aggregates | 2018 |
[Heparan sulphates, amyloidosis and neurodegeneration].
A number of neurodegenerative disorders have been linked directly to the accumulation of amyloid fibres. These fibres are made up of proteins or peptides with altered structures and which join together in vivo in association with heparan sulphate-type polysaccharides.. To examine the most recent concepts in the biology of heparan sulphates and their role in the aggregation of the peptide Abeta, of tau protein, of alpha-synuclein and of prions. The study also seeks to analyse their implications in neurodegenerative disorders such as Alzheimer's and Parkinson's disease and prion diseases.. In vitro, heparan sulphates have played an important role in the process of oligomerisation and fibrillation of amyloidogenic proteins or peptides, in the stabilisation of these bodies and their resistance to proteolysis, thereby participating in the formation of a wide range of amyloid fibres. Heparan sulphates have also been related to the internalisation of pro-amyloid fibres during the process of intercellular propagation (spreading), which is considered to be crucial in the development of proteinopathies, the best example of which is Alzheimer's disease.. This study suggests that the fine structures of heparan sulphates, their localisation in cells and tissues, together with their local concentration, may regulate the amyloidosis processes. The advances made in the understanding of this area of glyconeurobiology will make it possible to improve the understanding of the cell and molecular mechanisms underlying the neurodegenerative process.. Heparan sulfatos, amiloidosis y neurodegeneracion.. Introduccion. Numerosos trastornos neurodegenerativos se han asociado directamente a la acumulacion de fibras amiloides. Estas fibras estan formadas por proteinas o peptidos con conformaciones alteradas y que se agregan in vivo en asociacion con polisacaridos de tipo heparan sulfatos. Objetivos. Examinar los conceptos mas recientes sobre la biologia de los heparan sulfatos y su papel en la agregacion del peptido Abeta, de la proteina tau, de la alfa-sinucleina y de los priones, y analizar sus implicaciones en trastornos neurodegenerativos como las enfermedades de Alzheimer y de Parkinson y las enfermedades prionicas. Desarrollo. In vitro, los heparan sulfatos han desempeñado un papel importante en el proceso de oligomerizacion y fibrilacion de proteinas o peptidos amiloidogenos, en la estabilizacion de estos cuerpos y su resistencia a la proteolisis, participando asi en la formacion de una gran variedad de fibras amiloides. Los heparan sulfatos se han relacionado tambien con el proceso de internalizacion de fibras proamiloides durante el proceso de propagacion intercelular (spreading) considerado como central en la evolucion de las proteinopatias, cuyo mejor ejemplo es la enfermedad de Alzheimer. Conclusion. Este trabajo sugiere que las estructuras finas de los heparan sulfatos, sus localizaciones celulares y tisulares, asi como sus concentraciones locales, pueden regular los procesos de amiloidosis. Avances en la comprension de esta area de la gliconeurobiologia permitiran mejorar la comprension de los mecanismos celulares y moleculares del proceso neurodegenerativo. Topics: Alzheimer Disease; Amyloidosis; Animals; Disease Models, Animal; Heparitin Sulfate; Humans; Neurodegenerative Diseases; Parkinson Disease; Prion Diseases | 2017 |
4 other study(ies) available for heparitin-sulfate and Parkinson-Disease
Article | Year |
---|---|
Investigating the Roles of Heparan Sulfate Structures in Alpha-Synuclein Aggregation in Cell Culture Models.
Glycosaminoglycans (GAGs), belonging to a family of negatively charged linear polysaccharides, have been found in the cores of amyloid inclusions such as Lewy bodies, which are the central pathological features in Parkinson's disease (PD), a neurodegenerative disease. Lewy bodies/neurites are mostly composed of α-synuclein protein (α-syn) aggregates. Recent studies have shown that α-syn aggregates can propagate via neurons in a prion-like fashion by seeding the endogenous cellular α-syn. Various GAGs, especially heparan sulfate (HS), have been shown to be very critical in the aggregation of α-syn. HS chains of heparan sulfate proteoglycans (HSPGs) mediate the uptake of α-syn aggregates and help seed intracellular accumulation and further neuronal spread. Methods that inhibit the binding of these aggregates to HSPG have been shown to decrease the aggregate uptake and propagation. Here, we describe a cell-based assay to screen inhibitors of HS and α-syn interactions. Topics: alpha-Synuclein; Cell Culture Techniques; Glycosaminoglycans; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Humans; Parkinson Disease | 2022 |
Pretreatment with Perlecan-Conjugated Laminin-E8 Fragment Enhances Maturation of Grafted Dopaminergic Progenitors in Parkinson's Disease Model.
The therapeutic effect of a cell replacement therapy for Parkinson's disease (PD) depends on the proper maturation of grafted dopaminergic (DA) neurons and their functional innervation in the host brain. In the brain, laminin, an extracellular matrix protein, regulates signaling pathways for the survival and development of neurons by interacting with integrins. The heparan sulfate (HS) chain binds mildly to various neurotrophic factors and regulates their intracellular signaling. Perlecan-conjugated laminin 511/521-E8 fragments (p511/p521) were designed to contain an integrin-binding site and HS chains. Here we examined the effect of treating DA progenitors with p511/p521 prior to transplantation in rodent PD models. In vitro and in vivo experiments showed that p511/p521 treatment enhanced the maturation and neurite extension of the grafted DA progenitors by activating RAS-ERK1/2 signaling. This strategy will contribute to an efficient cell replacement therapy for PD in the future. Topics: Animals; Dopamine; Dopaminergic Neurons; Extracellular Matrix Proteins; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Humans; Laminin; Parkinson Disease | 2022 |
Characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase early amyloid-like oligomers and their implication in α-synuclein aggregation.
Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of α-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote α-synuclein aggregation. Taking into account the toxicity of α-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies. Topics: alpha-Synuclein; Amyloid; Animals; Chondroitin Sulfates; Glyceraldehyde-3-Phosphate Dehydrogenases; Heparin; Heparitin Sulfate; Humans; Hydrogen-Ion Concentration; Parkinson Disease; Protein Multimerization; Rabbits | 2012 |
Agrin binds alpha-synuclein and modulates alpha-synuclein fibrillation.
Recent studies have begun to investigate the role of agrin in brain and suggest that agrin's function likely extends beyond that of a synaptogenic protein. Particularly, it has been shown that agrin is associated with the pathological lesions of Alzheimer's disease (AD) and may contribute to the formation of beta-amyloid (Abeta) plaques in AD. We have extended the analysis of agrin's function in neurodegenerative diseases to investigate its role in Parkinson's disease (PD). Alpha-synuclein is a critical molecular determinant in familial and sporadic PD, with the formation of alpha-synuclein fibrils being enhanced by sulfated macromolecules. In the studies reported here, we show that agrin binds to alpha-synuclein in a heparan sulfate-dependent (HS-dependent) manner, induces conformational changes in this protein characterized by beta-sheet structure, and enhances insolubility of alpha-synuclein. We also show that agrin accelerates the formation of protofibrils by alpha-synuclein and decreases the half-time of fibril formation. The association of agrin with PD lesions was also explored in PD human brain, and these studies shown that agrin colocalizes with alpha-synuclein in neuronal Lewy bodies in the substantia nigra of PD brain. These studies indicate that agrin is capable of accelerating the formation of insoluble protein fibrils in a second common neurodegenerative disease. These findings may indicate shared molecular mechanisms leading to the pathophysiology in these two neurodegenerative disorders. Topics: Agrin; alpha-Synuclein; Alzheimer Disease; Animals; Antibodies, Monoclonal; Brain; Cell Death; Chickens; Circular Dichroism; Electrophoresis, Polyacrylamide Gel; Enzyme-Linked Immunosorbent Assay; Heparitin Sulfate; Humans; Immunoblotting; Immunohistochemistry; Lewy Bodies; Microscopy, Electron, Transmission; Neurodegenerative Diseases; Neurons; Parkinson Disease; Prions; Protein Binding; Protein Conformation; Recombinant Proteins; Solubility; Substantia Nigra; Synucleins; Time Factors | 2005 |