heparitin-sulfate has been researched along with Parasitemia* in 5 studies
1 trial(s) available for heparitin-sulfate and Parasitemia
Article | Year |
---|---|
Inhibition of merozoite invasion and transient de-sequestration by sevuparin in humans with Plasmodium falciparum malaria.
Even with the best available treatment, the mortality from severe Plasmodium falciparum malaria remains high. Typical features at death are high parasite loads and obstructed micro- vasculature. Infected erythrocytes (IE) containing mature parasites bind to the host receptor heparan sulfate, which is also an important receptor for merozoite invasion. To block merozoite invasion has not previously been proposed as an adjunctive therapeutic approach but it may preclude the early expansion of an infection that else leads to exacerbated sequestration and death.. The drug sevuparin was developed from heparin because heparan sulfate and heparin are nearly identical, so the rationale was that sevuparin would act as a decoy receptor during malaria infection. A phase I study was performed in healthy male volunteers and sevuparin was found safe and well tolerated.. A phase I/II clinical study was performed in which sevuparin was administered via short intravenous infusions to malaria patients with uncomplicated malaria who were also receiving atovaquone/proguanil treatment. This was a Phase I/II, randomized, open label, active control, parallel assignment study. Sevuparin was safe and well tolerated in the malaria patients. The mean relative numbers of ring-stage IEs decreased after a single sevuparin infusion and mature parasite IEs appeared transiently in the circulation. The effects observed on numbers of merozoites and throphozoites in the circulation, were detected already one hour after the first sevuparin injection. Here we report the development of a candidate drug named sevuparin that both blocks merozoite invasion and transiently de-sequesters IE in humans with P. falciparum malaria.. ClinicalTrials.gov NCT01442168. Topics: Administration, Oral; Adolescent; Adult; Aged; Antimalarials; Area Under Curve; Atovaquone; Binding, Competitive; Drug Administration Schedule; Drug Combinations; Drug Therapy, Combination; Erythrocytes; Female; Heparin; Heparitin Sulfate; Humans; Infusions, Intravenous; Malaria, Falciparum; Male; Merozoites; Middle Aged; Parasite Load; Parasitemia; Plasmodium falciparum; Proguanil; Severity of Illness Index | 2017 |
4 other study(ies) available for heparitin-sulfate and Parasitemia
Article | Year |
---|---|
Genetic and enzymatic characterization of 3-O-sulfotransferase SNPs associated with Plasmodium falciparum parasitaemia.
The HS3ST3A1/B1 genes encode two homologous 3-O-sulfotransferases involved in the late modification step during heparan sulfate (HS) biosynthesis. In addition to the single nucleotide polymorphisms (SNPs) rs28470223 (C > T) in the promoter region of both HS3ST3A1 and rs62636623 (Gly/Arg) in the stem region of HS3ST3B1, three missense mutations (rs62056073, rs61729712 and rs9906590) located within the catalytic sulfotransferase domain of 3-OST-B1 are linked and associated to Plasmodium falciparum parasitaemia. To ascertain the functional effects of these SNP associations, we investigated the regulatory effect of rs28470223 and characterized the enzymatic activity of the missense SNP rs61729712 (Ser279Asn) localized at proximity of the substrate binding cleft. The SNP rs28470223 results in decreased promoter activity of HS3ST3A1 in K562 cells, suggesting a reduced in vivo transcription activity of the target gene. A comparative kinetic analysis of wt HS3ST3B1 and the Ser269Asn variant (rs61729712) using a HS-derived oligosaccharide substrate reveals a slightly higher catalytic activity for the SNP variant. These genetic and enzymatic studies suggest that genetic variations in enzymes responsible of HS 3-O-sulfation can modulate their promoter and enzymatic activities and may influence P. falciparum parasitaemia. Topics: Binding Sites; Cell Line, Tumor; Heparitin Sulfate; Humans; Mutation, Missense; Parasitemia; Plasmodium falciparum; Polymorphism, Single Nucleotide; Protein Binding; Sulfotransferases | 2018 |
Genetic variations in genes involved in heparan sulphate biosynthesis are associated with Plasmodium falciparum parasitaemia: a familial study in Burkina Faso.
There is accumulating evidence that host heparan sulphate proteoglycans play an important role in the life cycle of Plasmodium through their heparan sulphate chains, suggesting that genetic variations in genes involved in heparan sulphate biosynthesis may influence parasitaemia. Interestingly, Hs3st3a1 and Hs3st3b1 encoding enzymes involved in the biosynthesis of heparan sulphate are located within a chromosomal region linked to Plasmodium chabaudi parasitaemia in mice. This suggests that HS3ST3A1 and HS3ST3B1 may influence P. falciparum parasitaemia in humans.. Polymorphisms within HS3ST3A1 and HS3ST3B1 were identified in 270 individuals belonging to 44 pedigrees and living in Burkina Faso. Linkage and association between parasitaemia and the polymorphisms were assessed with MERLIN and FBAT. A genetic interaction analysis was also conducted based on the PGMDR approach.. Linkage between P. falciparum parasitaemia and the chromosomal region containing HS3ST3A1 and HS3ST3B1 was detected on the basis of the 20 SNPs identified. In addition, rs28470223 located within the promoter of HS3ST3A1 was associated with P. falciparum parasitaemia, whereas the PGMDR analysis revealed a genetic interaction between HS3ST3A1 and HS3ST3B1. Seventy-three significant multi-locus models were identified after correcting for multiple tests; 37 significant multi-locus models included rs28470223, whereas 38 multi-locus models contained at least one mis-sense mutation within HS3ST3B1.. Genetic variants of HS3ST3A1 and HS3ST3B1 are associated with P. falciparum parasitaemia. This suggests that those variants alter both the function of heparan sulphate proteoglycans and P. falciparum parasitaemia. Topics: Adolescent; Adult; Animals; Biosynthetic Pathways; Burkina Faso; Child; Child, Preschool; Family Health; Female; Genetic Variation; Heparitin Sulfate; Humans; Malaria, Falciparum; Male; Mice; Parasitemia; Sulfotransferases; Young Adult | 2012 |
Plasmodium falciparum: molecular background to strain-specific rosette disruption by glycosaminoglycans and sulfated glycoconjugates.
Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, is a virulent parasite phenotype associated with the occurrence of severe malaria, e.g., cerebral malaria. Compounds with specific anti-rosetting activity are potential therapeutic agents. Glycosaminoglycans and sulfated glycoconjugates were found to disrupt rosettes in a strain- and isolate-specific manner. Rosette disruption was strongly connected to the presence of N-sulfate groups in heparin/heparan sulfate as demonstrated by modified heparin preparations. This finding was corroborated by the disruption of rosettes with mono- and disaccharides derived from heparin/heparan sulfate that contained N-sulfated glucosamine. Furthermore, heparinase III treatment of erythrocyte cultures infected by FCR3S1 (and to some extent TM 284) P. falciparum strains abolished rosetting. Heparinase III treatment of the uninfected erythrocytes prior to mixing with the infected culture impeded formation of rosettes, indicating that the rosetting receptors at least partially are of glycosaminoglycan nature. Topics: Animals; Binding, Competitive; Cell Adhesion; Erythrocytes; Fluoresceins; Fluorescent Dyes; Glycoconjugates; Glycosaminoglycans; Heparin; Heparitin Sulfate; Humans; Malaria, Falciparum; Parasitemia; Plasmodium falciparum; Polysaccharide-Lyases; Rosette Formation | 1999 |
Sulfated polyanions inhibit invasion of erythrocytes by plasmodial merozoites and cytoadherence of endothelial cells to parasitized erythrocytes.
Sulfated proteoglycans have been shown to be involved in the binding of sporozoites of malaria parasites to hepatocytes. In this study, we have evaluated the effect of sulfated glycosaminoglycans on the invasion of erythrocytes by Plasmodium falciparum merozoites and cytoadherence of parasitized erythrocytes (PRBC) to endothelial cells. Invasion of erythrocytes by HB3EC-6 (an HB3 line selected for high binding to endothelial cells) was inhibited by dextran sulfate 500K, dextran sulfate 5K, sulfatides, fucoidan, and heparin but not by chondroitin sulfate A. With the exception of sulfatides, the invasion-inhibitory effect was not mediated by killing of parasites. Cytoadherence of HB3EC-6 to human microvascular endothelial cells (HMEC-1) and inhibited by these sulfated glycoconjugates. The highly sulfated dextran sulfate 500K had the highest inhibitory effect on both invasion and cytoadherence, whereas the positively charged protamine sulfate promoted cytoadherence. Because preincubation of PRBC with sulfated glycosaminoglycans and treatment of target cells with heparinase had no significant inhibition on cytoadherence, it is unlikely that sulfated glycoconjugates are used directly by endothelial cells as cytoadhesion receptors. In an vivo experiment, we found that the administration of dextran sulfate 500K to CBA/Ca mice infected with Plasmodium berghei ANKA reduced parasitemia and delayed the death associated with anemia. These observations suggest that sulfated polyanions inhibit the invasion of erythrocytes by merozoites and cytoadherence of PRBC to endothelial cells by increasing negative repulsive charge and sterically interfering with the ligand-receptor interaction after binding to target cells. Topics: Animals; Cell Adhesion; Cell Line; Dextran Sulfate; Endothelium, Vascular; Erythrocytes; Glycoconjugates; Glycosaminoglycans; Heparitin Sulfate; Humans; Mice; Mice, Inbred CBA; Parasitemia; Plasmodium | 1996 |