heparitin-sulfate has been researched along with Idiopathic-Pulmonary-Fibrosis* in 3 studies
3 other study(ies) available for heparitin-sulfate and Idiopathic-Pulmonary-Fibrosis
Article | Year |
---|---|
Increased deposition of glycosaminoglycans and altered structure of heparan sulfate in idiopathic pulmonary fibrosis.
Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant deposition of extracellular matrix (ECM) constituents, including glycosaminoglycans (GAGs), that may play a role in remodelling processes by influencing critical mediators such as growth factors. We hypothesize that GAGs may be altered in IPF and that this contribute to create a pro-fibrotic environment. The aim of this study was therefore to examine the fine structure of heparan sulfate (HS), chondroitin/dermatan sulfate (CS/DS) and hyaluronan (HA) in lung samples from IPF patients and from control subjects. GAGs in lung samples from severe IPF patients and donor lungs were analyzed with HPLC. HS was assessed by immunohistochemistry and collagen was quantified as hydroxyproline content. The total amount of HS, CS/DS and HA was increased in IPF lungs but there was no significant difference in the total collagen content. We found a relative increase in total sulfation of HS due to increment of 2-O, 6-O and N-sulfation and a higher proportion of sulfation in CS/DS. Highly sulfated HS was located in the border zone between denser areas and more normal looking alveolar parenchyma in basement membranes of blood vessels and airways, that were immuno-positive for perlecan, as well as on the cell surface of spindle-shaped cells in the alveolar interstitium. These findings show for the first time that both the amount and structure of glycosaminoglycans are altered in IPF. These changes may contribute to the tissue remodelling in IPF by altering growth factor retention and activity, creating a pro-fibrotic ECM landscape. Topics: Adult; Aged; Case-Control Studies; Chondroitin Sulfates; Dermatan Sulfate; Disaccharides; Female; Glycosaminoglycans; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Humans; Hydroxyproline; Idiopathic Pulmonary Fibrosis; Lung; Male; Middle Aged; Molecular Structure; Sulfotransferases | 2017 |
Up-regulation of heparan sulfate 6-O-sulfation in idiopathic pulmonary fibrosis.
Heparan sulfate proteoglycans (HSPGs) are integral components of the lung. Changes in HSPGs have been documented in idiopathic pulmonary fibrosis (IPF). Many of the biological functions of HSPGs are mediated by heparan sulfate (HS) side chains, and little is understood about these side chains in the pathogenesis of IPF. The aims of this study were to compare HS structure between normal and IPF lungs and to examine how changes in HS regulate the fibrotic process. HS disaccharide analysis revealed that HS 6-O-sulfation was significantly increased in IPF lungs compared with normal lungs, concomitant with overexpression of HS 6-O-sulfotransferases 1 and 2 (HS6ST1/2) mRNA. Immunohistochemistry revealed that HS6ST2 was specifically expressed in bronchial epithelial cells, including those lining the honeycomb cysts in IPF lungs, whereas HS6ST1 had a broad expression pattern. Lung fibroblasts in the fibroblastic foci of IPF lungs expressed HS6ST1, and overexpression of HS6ST1 mRNA was observed in primary lung fibroblasts isolated from IPF lungs compared with those from normal lungs. In vitro, small interference RNA-mediated silencing of HS6ST1 in primary normal lung fibroblasts resulted in reduced Smad2 expression and activation and in reduced expression of collagen I and α-smooth muscle actin after TGF-β1 stimulation. Similar results were obtained in primary IPF lung fibroblasts. Furthermore, silencing of HS6ST1 in normal and IPF lung fibroblasts resulted in significant down-regulation of TβRIII (betaglycan). In summary, HS 6-O-sulfation is up-regulated in IPF with overexpression of HS6ST1 and HS6ST2, and overexpression of HS6ST1 in lung fibroblasts may regulate their fibrotic responses to TGF-β1. Topics: Actins; Bronchi; Collagen Type I; Down-Regulation; Epithelial Cells; Female; Heparitin Sulfate; Humans; Idiopathic Pulmonary Fibrosis; Lung; Male; Middle Aged; Proteoglycans; Receptors, Transforming Growth Factor beta; RNA, Messenger; Smad2 Protein; Sulfotransferases; Up-Regulation | 2014 |
Overexpression of Sulf2 in idiopathic pulmonary fibrosis.
Previously, we have shown that heparan sulfate (HS) 6-O-endosulfatase 1 (Sulf1) is a transforming growth factor-β1 (TGF-β1)-responsive gene in normal human lung fibroblasts and functions as a negative feedback regulator of TGF-β1 and that TGF-β1 induces the expression of Sulf1 as well as that of the closely related Sulf2 in a murine model of pulmonary fibrosis. In this study, we focused on the role of Sulf2 in modulating TGF-β1 function and the development of pulmonary fibrosis. We found that Sulf2 mRNA was overexpressed in lung samples from human patients with idiopathic pulmonary fibrosis (IPF), and Sulf2 protein was specifically localized to the hyperplastic type II alveolar epithelial cells (AECs). In vitro, TGF-β1 induced the expression of Sulf2 with accompanied HS 6-O-desulfation in A549 cells, adenocarcinoma cells derived from the type II alveolar epithelium. Using small interference RNA to block Sulf2 expression, we observed a biphasic TGF-β1 response with early enhanced Smad activation, but eventually reduced TGF-β1 target gene expression in Sulf2 knockdown A549 cells compared with the control cells. To study the role of Sulf2 in normal type II AECs, we isolated primary type II cells from wild-type and Sulf2 knockout mice. We observed enhanced Smad activation as well as enhanced TGF-β1 target gene expression in Sulf2 knockout type II AECs compared with wild-type type II AECs. In conclusion, Sulf2 is overexpressed in IPF and may play a role in regulating TGF-β1 signaling in type II AECs. Topics: Aged; Alveolar Epithelial Cells; Animals; Antibiotics, Antineoplastic; Bleomycin; Cell Line, Tumor; Enzyme Induction; Female; Gene Expression; Heparitin Sulfate; Humans; Idiopathic Pulmonary Fibrosis; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Primary Cell Culture; Signal Transduction; Smad Proteins; Sulfatases; Sulfotransferases; Transforming Growth Factor beta1 | 2013 |