heparitin-sulfate and Hyperglycemia

heparitin-sulfate has been researched along with Hyperglycemia* in 6 studies

Reviews

1 review(s) available for heparitin-sulfate and Hyperglycemia

ArticleYear
Glycosaminoglycans, hyperglycemia, and disease.
    Antioxidants & redox signaling, 2014, Sep-01, Volume: 21, Issue:7

    Diabetes is a widespread disease with many clinical pathologies. Despite numerous pharmaceutical strategies for treatment, the incidence of diabetes continues to increase. Hyperglycemia, observed in diabetes, causes endothelial injury resulting in microvascular and macrovascular complications such as nephropathy, retinopathy, neuropathy, and increased atherosclerosis.. Proteoglycans are chemically diverse macromolecules consisting of a protein core with glycosaminoglycans (GAGs) attached. Heparan sulfate proteoglycans are important compounds found on the endothelial cell membrane and in the extracellular matrix, which play an important role in growth regulation and serve as a reservoir for cytokines and other bioactive molecules. Endothelial cells are altered in hyperglycemia by a reduction in heparan sulfate and upregulation and secretion of heparanase, an enzyme that degrades heparan sulfate GAGs on proteoglycans. Reactive oxygen species, increased in diabetes, also destroy GAGs.. Preservation of heparan sulfate proteoglycans on endothelial cells may be a strategy to prevent angiopathy associated with diabetes. The use of GAGs and GAG-like compounds may increase endothelial heparan sulfate and prevent an increase in the heparanase enzyme.. Elucidating the mechanisms of GAG depletion and its significance in endothelial health may help to further understand, prevent, and treat cardiovascular complications associated with diabetes. Further studies examining the role of GAGs and GAG-like compounds in maintaining endothelial health, including their effect on heparanase, will determine the feasibility of these compounds in diabetes treatment. Preservation of heparan sulfate by decreasing heparanase may have important implications not only in diabetes, but also in cardiovascular disease and tumor biology.

    Topics: Animals; Diabetes Complications; Diabetes Mellitus; Endothelial Cells; Glycosaminoglycans; Heparan Sulfate Proteoglycans; Heparitin Sulfate; Humans; Hyperglycemia

2014

Other Studies

5 other study(ies) available for heparitin-sulfate and Hyperglycemia

ArticleYear
Hyperphagia in offsprings of in utero hyperglycemic mothers is associated with increased expression of heparan sulfate proteoglycans in hypothalamus.
    Molecular and cellular biochemistry, 2022, Volume: 477, Issue:8

    In utero hyperglycemia has consequences on future outcomes in the offsprings. We had earlier shown that in utero hyperglycemia impacts proteoglycans/glycosaminoglycans, one of the key molecules involved in brain development. Hypothalamic HSPGs such as syndecan-1 and syndecan-3 are well known for their involvement in feeding behavior. Therefore, studies were carried out to determine the effect of maternal hyperglycemia on the expression of HSPGs in the hypothalamus of offspring brain. Results revealed increased protein abundance of Syndecan-1 and -3 as well as glypican-1 in postnatal adults from hyperglycemic mothers. This was associated with increased hyperphagia and increased expression of Neuropeptide Y. These results indicate the likely consequences on offsprings exposed to in utero hyperglycemia on its growth.

    Topics: Adult; Cinnamates; Female; Heparitin Sulfate; Humans; Hyperglycemia; Hyperphagia; Hypothalamus; Membrane Glycoproteins; Mothers; Syndecan-1; Thiadiazoles

2022
Effect of high glucose on glycosaminoglycans in cultured retinal endothelial cells and rat retina.
    Glycobiology, 2022, 07-13, Volume: 32, Issue:8

    The endothelial glycocalyx regulates vascular permeability, inflammation, and coagulation, and acts as a mechanosensor. The loss of glycocalyx can cause endothelial injury and contribute to several microvascular complications and, therefore, may promote diabetic retinopathy. Studies have shown a partial loss of retinal glycocalyx in diabetes, but with few molecular details of the changes in glycosaminoglycan (GAG) composition. Therefore, the purpose of our study was to investigate the effect of hyperglycemia on GAGs of the retinal endothelial glycocalyx.. GAGs were isolated from rat retinal microvascular endothelial cells (RRMECs), media, and retinas, followed by liquid chromatography-mass spectrometry assays. Quantitative real-time polymerase chain reaction was used to study mRNA transcripts of the enzymes involved in GAG biosynthesis.. Hyperglycemia significantly increased the shedding of heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA). There were no changes to the levels of HS in RRMEC monolayers grown in high-glucose media, but the levels of CS and HA decreased dramatically. Similarly, while HA decreased in the retinas of diabetic rats, the total GAG and CS levels increased. Hyperglycemia in RRMECs caused a significant increase in the mRNA levels of the enzymes involved in GAG biosynthesis (including EXTL-1,2,3, EXT-1,2, ChSY-1,3, and HAS-2,3), with these increases potentially being compensatory responses to overall glycocalyx loss. Both RRMECs and retinas of diabetic rats exhibited glucose-induced alterations in the disaccharide compositions and sulfation of HS and CS, with the changes in sulfation including N,6-O-sulfation on HS and 4-O-sulfation on CS.

    Topics: Animals; Cells, Cultured; Chondroitin Sulfates; Diabetes Mellitus, Experimental; Endothelial Cells; Glucose; Glycosaminoglycans; Heparitin Sulfate; Hyaluronic Acid; Hyperglycemia; Rats; Retina; RNA, Messenger

2022
Effects of restoring normoglycemia in type 1 diabetes on inflammatory profile and renal extracellular matrix structure after simultaneous pancreas and kidney transplantation.
    Diabetes research and clinical practice, 2015, Volume: 107, Issue:1

    Patients with type 1 diabetes and end-stage renal disease with simultaneous pancreas and kidney (SPK) or kidney transplants alone (KA) were recruited 9-12 years post transplantation. We investigated differences between these groups with regard to inflammatory parameters and long-term structural changes in kidneys.. Blood samples were analyzed by ELISA and multiplex for chemokines, cytokines, growth factors, cell adhesion molecules and matrix metalloproteinases. Kidney graft biopsies were analyzed by electron microscopy for glomerular basement membrane thickness. Heparan- and chondroitin sulfate disaccharide structures were determined by size exclusion chromatography mass-spectrometry.. The SPK and the KA group had average glycated hemoglobin A1c (HbA1c) of 5.8% (40 mmol/mol) and 8.6% (70 mmol/mol) respectively. SPK recipients also had 16.2% lower body mass index (BMI) and 46.4% lower triglyceride levels compared with KA recipients, compatible with an improved metabolic profile in the SPK group. Plasminogen activator inhibitor (PAI-1), C-reactive protein (CRP) and vascular endothelial growth factor (VEGF) were lower in the SPK group. In kidney graft biopsies of the KA-patients an 81.2% increase in average glomerular basement membrane thickness was observed, accompanied by alterations in heparan sulfate proteoglycan structure. In addition to a decrease in 6-O-sulfated disaccharides, an increase in non-N-sulfated disaccharides with a corresponding slight decrease in N-sulfation was found in kidney biopsies from hyperglycemic patients.. Patients with end stage renal disease subjected to KA transplantation showed impaired inflammatory profile, increased thickness of basement membranes and distinct changes in heparan sulfate structures compared with SPK recipients.

    Topics: Adult; Cross-Sectional Studies; Diabetes Mellitus, Type 1; Female; Heparitin Sulfate; Humans; Hyperglycemia; Inflammation; Kidney; Kidney Failure, Chronic; Kidney Transplantation; Male; Middle Aged; Pancreas Transplantation; Proteoglycans

2015
Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization.
    Cardiovascular research, 2010, Jul-01, Volume: 87, Issue:1

    Heparanase, which specifically cleaves carbohydrate chains of heparan sulfate, has been implicated in the pathology of diabetes-associated complications. Using high glucose (HG) to replicate hyperglycaemia observed following diabetes, the present study was designed to determine the mechanism by which HG initiates endothelial heparanase secretion.. To examine the effect of HG on endothelial heparanase, bovine coronary artery endothelial cells were incubated with 25 mM glucose. Strategies using different agonists and antagonists were used to determine the mechanism behind HG-induced heparanase secretion. In endothelial cells, heparanase colocalized with lysosomes predominately around the nucleus, and HG caused its dispersion towards the plasma membrane for subsequent secretion. ATP release, purinergic receptor activation, cortical actin disassembly, and stress actin formation were essential for this HG-induced heparanase secretion. With HG, phosphorylation of filamin likely contributed to the cortical actin disassembly, whereas Ca(2+)/calmodulin-dependent protein kinase II and p38 mitogen-activated protein kinase /heat shock protein 25 phosphorylation mediated stress actin formation. The endothelial secreted heparanase in response to HG demonstrated endoglucuronidase activity, cleaved heparan sulfate, and released attached proteins like lipoprotein lipase and basic fibroblast growth factor.. Our results suggest that HG is a potent stimulator of endothelial heparanase secretion. These data may assist in devising new therapeutic strategies to prevent or delay the cardiovascular complications associated with diabetes.

    Topics: Actin Cytoskeleton; Adenosine Triphosphate; Animals; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cattle; Cells, Cultured; Coculture Techniques; Contractile Proteins; Endothelial Cells; Filamins; Glucose; Glucuronidase; Heparitin Sulfate; HSP27 Heat-Shock Proteins; Hyperglycemia; Lysosomes; Male; Microfilament Proteins; Myocytes, Cardiac; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Protein Transport; Rats; Rats, Wistar; Receptors, Purinergic P2; Receptors, Purinergic P2Y2; Stress Fibers; Time Factors

2010
A central role for protein kinase C overactivity in diabetic glomerulosclerosis: implications for prevention with antioxidants, fish oil, and ACE inhibitors.
    Medical hypotheses, 1998, Volume: 50, Issue:2

    The primary etiologic factor in diabetic glomerulosclerosis appears to be an overproduction of transforming growth factor-beta by mesangial cells, which in turn reflects a hyperglycemically mediated overactivation of protein kinase C (PKC) throughout the glomerulus. Membrane-active antioxidants, fish oil, and angiotensin-converting enzyme inhibitors can act to down-regulate glomerular PKC activity, via a variety of mechanisms that may include activation of diacylglycerol kinase and suppression of phosphatidate phosphohydrolase, support of endothelial nitric oxide and heparan sulfate production, inhibition of thromboxane and angiotensin synthesis/activity, and correction of glomerular hypertension. The beneficial impact of these measures on vascular endothelial function may be of more general utility in the prevention of diabetic complications such as retinopathy, neuropathy, and atherosclerosis. Adjunctive use of gamma-linolenic acid is indicated for prevention of neuropathy, and it is conceivable that bioactive chromium will have protective activity not solely attributable to improved glycemic control. Re-establishing euglycemia must clearly remain the core strategy for preventing diabetic complications, but when glycemic control remains suboptimal, practical, safe measures are at hand for decreasing risk.

    Topics: Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Antioxidants; Diabetic Angiopathies; Diabetic Nephropathies; Enzyme Activation; Fish Oils; Heparitin Sulfate; Humans; Hyperglycemia; Kidney Glomerulus; Lipid Peroxidation; Models, Biological; Nitric Oxide; Protein Kinase C; Thromboxane A2; Transforming Growth Factor beta

1998