heparitin-sulfate and Foot-and-Mouth-Disease

heparitin-sulfate has been researched along with Foot-and-Mouth-Disease* in 8 studies

Other Studies

8 other study(ies) available for heparitin-sulfate and Foot-and-Mouth-Disease

ArticleYear
Adherent and suspension baby hamster kidney cells have a different cytoskeleton and surface receptor repertoire.
    PloS one, 2021, Volume: 16, Issue:6

    Animal cell culture, with single cells growing in suspension, ideally in a chemically defined environment, is a mainstay of biopharmaceutical production. The synthetic environment lacks exogenous growth factors and usually requires a time-consuming adaptation process to select cell clones that proliferate in suspension to high cell numbers. The molecular mechanisms that facilitate the adaptation and that take place inside the cell are largely unknown. Especially for cell lines that are used for virus antigen production such as baby hamster kidney (BHK) cells, the restriction of virus growth through the evolution of undesired cell characteristics is highly unwanted. The comparison between adherently growing BHK cells and suspension cells with different susceptibility to foot-and-mouth disease virus revealed differences in the expression of cellular receptors such as integrins and heparan sulfates, and in the organization of the actin cytoskeleton. Transcriptome analyses and growth kinetics demonstrated the diversity of BHK cell lines and confirmed the importance of well-characterized parental cell clones and mindful screening to make sure that essential cellular features do not get lost during adaptation.

    Topics: Adaptation, Physiological; Animals; Cell Culture Techniques; Cell Line; CHO Cells; Cricetinae; Cricetulus; Cytoskeleton; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Gene Expression Profiling; Heparitin Sulfate; Integrins; Kidney; Receptors, Cell Surface

2021
Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors.
    Viruses, 2020, 09-10, Volume: 12, Issue:9

    Foot-and-mouth disease (FMD) is an economically devastating animal disease. Adapting the field virus to cells is critical to the vaccine production of FMD viruses (FMDV), and heparan sulfate (HS) and Jumonji C-domain-containing protein 6 (JMJD6) are alternative receptors of cell-adapted FMDV. We performed serial passages of FMDV O/SKR/Andong/2010, classified as the O/Mya-98 topotype/lineage and known as a highly virulent strain, to develop a vaccine seed virus. We traced changes in the amino acid sequences of the P1 region, plaque phenotypes, and the receptor usage of the viruses, and then structurally analyzed the mutations. VP3 H56R and D60G mutations were observed in viruses using the HS receptor and led to changes in the hydrogen bonding between VP3 56 and 60. A VP1 P208L mutation was observed in the virus using the JMJD6 receptor during cell adaptation, enabling the interaction with JMJD6 through the formation of a new hydrogen bond with JMJD6 residue 300. Furthermore, VP1 208 was near the VP1 95/96 amino acids, previously reported as critical mutations for JMJD6 receptor interactions. Thus, the mutation at VP1 208 could be critical for cell adaptation related to the JMJD6 receptor and may serve as a basis for mechanism studies on FMDV cell adaptation.

    Topics: Amino Acid Sequence; Animals; Capsid Proteins; Cell Line; Cricetinae; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Heparitin Sulfate; Jumonji Domain-Containing Histone Demethylases; Molecular Docking Simulation; Mutation; Protein Interaction Domains and Motifs; Receptors, Virus; Serogroup; Viral Vaccines

2020
Symmetrical arrangement of positively charged residues around the 5-fold axes of SAT type foot-and-mouth disease virus enhances cell culture of field viruses.
    PLoS pathogens, 2020, Volume: 16, Issue:9

    Field isolates of foot-and-mouth disease viruses (FMDVs) utilize integrin-mediated cell entry but many, including Southern African Territories (SAT) viruses, are difficult to adapt to BHK-21 cells, thus hampering large-scale propagation of vaccine antigen. However, FMDVs acquire the ability to bind to cell surface heparan sulphate proteoglycans, following serial cytolytic infections in cell culture, likely by the selection of rapidly replicating FMDV variants. In this study, fourteen SAT1 and SAT2 viruses, serially passaged in BHK-21 cells, were virulent in CHO-K1 cells and displayed enhanced affinity for heparan, as opposed to their low-passage counterparts. Comparative sequence analysis revealed the fixation of positively charged residues clustered close to the icosahedral 5-fold axes of the virus, at amino acid positions 83-85 in the βD-βE loop and 110-112 in the βF-βG loop of VP1 upon adaptation to cultured cells. Molecular docking simulations confirmed enhanced binding of heparan sulphate to a model of the adapted SAT1 virus, with the region around VP1 arginine 112 contributing the most to binding. Using this information, eight chimeric field strain mutant viruses were constructed with additional positive charges in repeated clusters on the virion surface. Five of these bound heparan sulphate with expanded cell tropism, which should facilitate large-scale propagation. However, only positively charged residues at position 110-112 of VP1 enhanced infectivity of BHK-21 cells. The symmetrical arrangement of even a single amino acid residue in the FMD virion is a powerful strategy enabling the virus to generate novel receptor binding and alternative host-cell interactions.

    Topics: Animals; Capsid Proteins; Cricetinae; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Heparitin Sulfate; Models, Molecular; Molecular Docking Simulation; Receptors, Virus; Virion

2020
Single Amino Acid Substitutions Surrounding the Icosahedral Fivefold Symmetry Axis Are Critical for Alternative Receptor Usage of Foot-and-Mouth Disease Virus.
    Viruses, 2020, 10-09, Volume: 12, Issue:10

    The integrins function as the primary receptor molecules for the pathogenic infection of foot-and-mouth disease virus (FMDV) in vivo, while the acquisition of a high affinity for heparan sulfate (HS) of some FMDV variants could be privileged to facilitate viral infection and expanded cell tropism in vitro. Here, we noted that a BHK-adapted Cathay topotype derivative (O/HN/CHA/93tc) but not its genetically engineered virus (rHN), was able to infect HS-positive CHO-K1 cells and mutant pgsD-677 cells. There were one or three residue changes in the capsid proteins of O/HN/CHA/93tc and rHN, as compared with that of their tissue-originated isolate (O/HN/CHA/93wt). The phenotypic properties of a set of site-directed mutants of rHN revealed that E83K of VP1 surrounding the fivefold symmetry axis was necessary for the integrin-independent infection of O/HN/CHA/93tc. L80 in VP2 was essential for the occurrence of E83K in VP1 during the adaptation of O/HN/CHA/93wt to BHK-21 cells. L80M in VP2 and D138G in VP1 of rHN was deleterious, which could be compensated by K83R of VP1 for restoring an efficient infection of integrin-negative CHO cell lines. These might have important implications for understanding the molecular and evolutionary mechanisms of the recognition and binding of FMDV with alternative cellular receptors.

    Topics: Amino Acid Sequence; Amino Acid Substitution; Animals; Binding Sites; Capsid Proteins; Cell Line; CHO Cells; Cricetinae; Cricetulus; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Genome, Viral; Heparitin Sulfate; Mice; Receptors, Virus; Virus Attachment; Virus Internalization

2020
Engineering Responses to Amino Acid Substitutions in the VP0- and VP3-Coding Regions of PanAsia-1 Strains of Foot-and-Mouth Disease Virus Serotype O.
    Journal of virology, 2019, 04-01, Volume: 93, Issue:7

    The presence of sequence divergence through adaptive mutations in the major capsid protein VP1, and also in VP0 (VP4 and VP2) and VP3, of foot-and-mouth disease virus (FMDV) is relevant to a broad range of viral characteristics. To explore the potential role of isolate-specific residues in the VP0 and VP3 coding regions of PanAsia-1 strains in genetic and phenotypic properties of FMDV, a series of recombinant full-length genomic clones were constructed using Cathay topotype infectious cDNA as the original backbone. The deleterious and compensatory effects of individual amino acid substitutions at positions 4008 and 3060 and in several different domains of VP2 illustrated that the chain-based spatial interaction patterns of VP1, VP2, and VP3 (VP1-3), as well as between the internal VP4 and the three external capsid proteins of FMDV, might contribute to the assembly of eventually viable viruses. The Y2079H site-directed mutants dramatically induced a decrease in plaque size on BHK-21 cells and viral pathogenicity in suckling mice. Remarkably, the 2079H-encoding viruses displayed a moderate increase in acid sensitivity correlated with NH

    Topics: Amino Acid Substitution; Animals; Capsid Proteins; CHO Cells; Cricetulus; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Heparitin Sulfate; Mice; Open Reading Frames; Serogroup; Virion

2019
Identification of a novel cell culture adaptation site on the capsid of foot-and-mouth disease virus.
    The Journal of general virology, 2015, Volume: 96, Issue:9

    Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1-VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A - ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A -  vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.

    Topics: Amino Acid Motifs; Animals; Capsid; Capsid Proteins; Cell Culture Techniques; CHO Cells; Cricetinae; Cricetulus; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Heparitin Sulfate; Protein Binding; Receptors, Virus; Viral Tropism

2015
Evaluation of genetically engineered derivatives of a Chinese strain of foot-and-mouth disease virus reveals a novel cell-binding site which functions in cell culture and in animals.
    Journal of virology, 2003, Volume: 77, Issue:5

    Adaptation of field isolates of foot-and-mouth disease virus (FMDV) to grow in cells in culture can result in changes in viral properties that include acquisition of the ability to bind to cell surface heparan sulfate (HS). After 13 passages on BHK cells to produce a vaccine, a Cathay topotype isolate of FMDV serotype O from China (O/CHA/90) extended its cell culture host range and bound to heparin-Sepharose, although it did not require cell surface HS as a receptor molecule. To understand these phenomena, we constructed chimeric viruses by using a type A(12) infectious cDNA and the capsid protein-coding regions of O/CHA/90 and its cell culture-adapted derivative (vac-O/CHA/90). Using a set of viruses derived from these chimeras by exchanging portions of the capsid-coding regions, we discovered that a group of amino acid residues that surround the fivefold axis of the icosahedral virion determine host range in cell culture and influence pathogenicity in pigs. These residues included aromatic amino acids at positions 108 and 174 and positively charged residues at positions 83 and 172 in protein 1D. To test if these residues participated in non-integrin-dependent cell binding, the integrin-binding RGD sequence in protein 1D was changed to KGE in two different chimeras. Evaluation of these KGE viruses indicated that growth in cell culture was not dependent on HS. One of these viruses was tested in pigs, where it produced a mild disease and maintained its KGE sequence. These results are discussed in terms of receptor utilization and pathogenesis of this important pathogen.

    Topics: Amino Acid Sequence; Animals; Binding Sites; Capsid Proteins; Cell Line; China; Cricetinae; Foot-and-Mouth Disease; Foot-and-Mouth Disease Virus; Genetic Engineering; Heparitin Sulfate; Models, Molecular; Molecular Sequence Data; Oligopeptides; Recombinant Fusion Proteins; Sepharose; Swine; Swine Diseases; Virion

2003
Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate.
    Journal of virology, 1996, Volume: 70, Issue:8

    Foot-and-mouth disease virus (FMDV) enters cells by attaching to cellular receptor molecules of the integrin family, one of which has been identified as the RGD-binding integrin alpha(v)beta3. Here we report that, in addition to an integrin binding site, type O strains of FMDV share with natural ligands of alpha(v)beta3 (i.e., vitronectin and fibronectin) a specific affinity for heparin and that binding to the cellular form of this sulfated glycan, heparan sulfate, is required for efficient infection of cells in culture. Binding of the virus to paraformaldehyde-fixed cells was powerfully inhibited by agents such as heparin, that compete with heparan sulfate or by agents that compete for heparan sulfate (platelet factor 4) or that inactivate it (heparinase). Neither chondroitin sulfate, a structurally related component of the extracellular matrix, nor dextran sulfate appreciably inhibited binding. The functional importance of heparan sulfate binding was demonstrated by the facts that (i) infection of live cells by FMDV could also be blocked specifically by heparin, albeit at a much higher concentration of inhibitor; (ii) pretreatment of cells with heparinase reduced the number of plaques formed compared with that for untreated cells; and (iii) mutant cell lines deficient in heparan sulfate expression were unable to support plaque formation by FMDV, even though they remained equally susceptible to another picornavirus, bovine enterovirus. The results show that entry of type O FMDV into cells is a complex process and suggest that the initial contact with the cell surface is made through heparan sulfate.

    Topics: Animals; Aphthovirus; Cattle; Cell Line; Cell Membrane; Cricetinae; Foot-and-Mouth Disease; Heparitin Sulfate; Receptors, Cell Surface; Receptors, Virus

1996