heparitin-sulfate and Classical-Swine-Fever

heparitin-sulfate has been researched along with Classical-Swine-Fever* in 2 studies

Other Studies

2 other study(ies) available for heparitin-sulfate and Classical-Swine-Fever

ArticleYear
Determinants of virulence of classical swine fever virus strain Brescia.
    Journal of virology, 2004, Volume: 78, Issue:16

    Two related classical swine fever virus (CSFV) strain Brescia clones were isolated from blood samples from an infected pig. Virus C1.1.1 is a cell-adapted avirulent variant, whereas CoBrB is a virulent variant. Sequence analysis revealed 29 nucleic acid mutations in C1.1.1, resulting in 9 amino acid substitutions compared to the sequence of CoBrB (476)R. Using reverse genetics, parts of the genomes of these viruses, which contain differences that lead to amino acid changes, were exchanged. Animal experiments with chimeric viruses derived from C1.1.1 and CoBrB (476)R showed that a combination of amino acid changes in the structural and nonstructural regions reduced the virulence of CSFV in pigs. Moreover, the presence of a Leu at position 710 in structural envelope protein E2 seemed to be an important factor in the virulence of the virus. Changing the Leu at position 710 in the CoBrB (476)S variant into a His residue did not affect virulence. However, the (710)His in the C1.1.1/CoBrB virus, together with adaptive mutations (276)R, (476)R, and (477)I in E(rns), resulted in reduced virulence in pigs. These results indicated that mutations in E(rns) and E2 alone do not determine virulence in pigs. The results of in vitro experiments suggested that a high affinity for heparan sulfate of C1.1.1 E(rns) may reduce the spread of the C1.1.1/CoBrB virus in pigs and together with the altered surface structure of E2 caused by the (710)L-->H mutation may result in a less efficient infection of specific target cells in pigs. Both these features contributed to the attenuation of the C1.1.1/CoBrB virus in vivo.

    Topics: Amino Acid Sequence; Animals; Cell Line; Classical Swine Fever; Classical Swine Fever Virus; Heparitin Sulfate; Mutation; Recombination, Genetic; Sequence Alignment; Swine; Viral Envelope Proteins; Virulence

2004
Interaction of classical swine fever virus with membrane-associated heparan sulfate: role for virus replication in vivo and virulence.
    Journal of virology, 2001, Volume: 75, Issue:20

    Passage of native classical swine fever virus (CSFV) in cultured swine kidney cells (SK6 cells) selects virus variants that attach to the surface of cells by interaction with membrane-associated heparan sulfate (HS). A Ser-to-Arg change in the C terminus of envelope glycoprotein E(rns) (amino acid 476 in the open reading frame of CSFV) is responsible for selection of these HS-binding virus variants (M. M. Hulst, H. G. P. van Gennip, and R. J. M. Moormann, J. Virol. 74:9553-9561, 2000). In this investigation we studied the role of binding of CSFV to HS in vivo. Using reverse genetics, an HS-independent recombinant virus (S-ST virus) with Ser(476) and an HS-dependent recombinant virus (S-RT virus) with Arg(476) were constructed. Animal experiments indicated that this adaptive Ser-to-Arg mutation had no effect on the virulence of CSFV. Analysis of viruses reisolated from pigs infected with these recombinant viruses indicated that replication in vivo introduced no mutations in the genes of the envelope proteins E(rns), E1, and E2. However, the blood of one of the three pigs infected with the S-RT virus contained also a low level of virus particles that, when grown under a methylcellulose overlay, produced relative large plaques, characteristic of an HS-independent virus. Sequence analysis of such a large-plaque phenotype showed that Arg(476) was mutated back to Ser(476). Removal of HS from the cell surface and addition of heparin to the medium inhibited infection of cultured (SK6) and primary swine kidney cells with S-ST virus reisolated from pigs by about 70% whereas infection with the administered S-ST recombinant virus produced in SK6 cells was not affected. Furthermore, E(rns) S-ST protein, produced in insect cells, could bind to immobilized heparin and to HS chains on the surface of SK6 cells. These results indicated that S-ST virus generated in pigs is able to infect cells by an HS-dependent mechanism. Binding of concanavalin A (ConA) to virus particles stimulated the infection of SK6 cells with S-ST virus produced in these cells by 12-fold; in contrast, ConA stimulated infection with S-ST virus generated in pigs no more than 3-fold. This suggests that the surface properties of S-ST virus reisolated from pigs are distinct from those of S-ST virus produced in cell culture. We postulate that due to these surface properties, in vivo-generated CSFV is able to infect cells by an HS-dependent mechanism. Infection studies with the HS-dependent S-RT virus, howe

    Topics: Animals; Arginine; Cell Membrane; Cells, Cultured; Classical Swine Fever; Classical Swine Fever Virus; Concanavalin A; Dose-Response Relationship, Drug; Heparin; Heparitin Sulfate; Mutation; Recombinant Proteins; Serine; Specific Pathogen-Free Organisms; Swine; Viral Envelope Proteins; Virulence; Virus Replication

2001