hdac-42 and Prostatic-Neoplasms

hdac-42 has been researched along with Prostatic-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for hdac-42 and Prostatic-Neoplasms

ArticleYear
Development of a brain metastatic canine prostate cancer cell line.
    The Prostate, 2011, Volume: 71, Issue:12

    Prostate cancer in men has a high mortality and morbidity due to metastatic disease. The pathobiology of prostate cancer metastasis is not well understood and cell lines and animal models that recapitulate the complex nature of the disease are needed. Therefore, the goal of the study was to establish and characterize a new prostate cancer line derived from a dog with spontaneous prostate cancer.. A new cell line (Leo) was derived from a dog with spontaneous prostate cancer. Immunohistochemistry and PCR were used to characterize the primary prostate cancer and xenografts in nude mice. Subcutaneous tumor growth and metastases in nude mice were evaluated by bioluminescent imaging, radiography and histopathology. In vitro chemosensitivity of Leo cells to therapeutic agents was measured.. Leo cells expressed the secretory epithelial cytokeratins (CK)8, 18, and ductal cell marker, CK7. The cell line grew in vitro (over 75 passages) and was tumorigenic in the subcutis of nude mice. Following intracardiac injection, Leo cells metastasized to the brain, spinal cord, bone, and adrenal gland. The incidence of metastases was greatest to the central nervous system (80%) with a lower incidence to bone (20%) and the adrenal glands (16%). In vitro chemosensitivity assays demonstrated that Leo cells were sensitive to Velcade and an HDAC-42 inhibitor with IC(50) concentrations of 1.9 nm and 0.95 µm, respectively.. The new prostate cancer cell line (Leo) will be a valuable model to investigate the mechanisms of the brain and bone metastases.

    Topics: Adrenal Gland Neoplasms; Animals; Antineoplastic Agents; Bone Neoplasms; Boronic Acids; Bortezomib; Brain Neoplasms; Carcinogenicity Tests; Carcinoma; Cell Division; Cell Line, Tumor; Dogs; Immunohistochemistry; Incidence; Injections, Subcutaneous; Keratin-18; Keratin-7; Keratin-8; Male; Mice; Mice, Nude; Neoplasm Transplantation; Neoplasms, Connective Tissue; Parathyroid Hormone-Related Protein; Phenylbutyrates; Prostatic Neoplasms; Pyrazines; Reverse Transcriptase Polymerase Chain Reaction; Spinal Cord Neoplasms; Subcutaneous Tissue; Transplantation, Heterologous

2011
Antitumor effects of a novel phenylbutyrate-based histone deacetylase inhibitor, (S)-HDAC-42, in prostate cancer.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2006, Sep-01, Volume: 12, Issue:17

    To assess the antitumor effects of a novel phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, (S)-HDAC-42, vis-à-vis suberoylanilide hydroxamic acid (SAHA) in in vitro and in vivo models of human prostate cancer.. The in vitro effects of (S)-HDAC-42 and SAHA were evaluated in PC-3, DU-145, or LNCaP human prostate cancer cell lines. Cell viability, apoptosis, and indicators of HDAC inhibition were assessed. Effects on Akt and members of the Bcl-2 and inhibitor of apoptosis protein families were determined by immunoblotting. Immunocompromised mice bearing established s.c. PC-3 xenograft tumors were treated orally with (S)-HDAC-42 (50 mg/kg q.o.d. or 25 mg/kg q.d.) or SAHA (50 mg/kg q.d.) for 28 days. In vivo end points included tumor volumes and intratumoral changes in histone acetylation, phospho-Akt status, and protein levels of Bcl-xL and survivin.. (S)-HDAC-42 was more potent than SAHA in suppressing the viability of all cell lines evaluated with submicromolar IC50 values. Relative to SAHA, (S)-HDAC-42 exhibited distinctly superior apoptogenic potency, and caused markedly greater decreases in phospho-Akt, Bcl-xL, and survivin in PC-3 cells. The growth of PC-3 tumor xenografts was suppressed by 52% and 67% after treatment with (S)-HDAC-42 at 25 and 50 mg/kg, respectively, whereas SAHA at 50 mg/kg suppressed growth by 31%. Intratumoral levels of phospho-Akt and Bcl-xL were markedly reduced in (S)-HDAC-42-treated mice, in contrast to mice treated with SAHA.. (S)-HDAC-42 is a potent orally bioavailable inhibitor of HDAC, as well as targets regulating multiple aspects of cancer cell survival, which might have clinical value in prostate cancer chemotherapy and warrants further investigation in this regard.

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Cell Line, Tumor; Cell Proliferation; Enzyme Inhibitors; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Male; Mice; Mice, Nude; Phenylbutyrates; Phosphorylation; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; Structure-Activity Relationship; Vorinostat; Xenograft Model Antitumor Assays

2006