hc-067047 and Pain

hc-067047 has been researched along with Pain* in 4 studies

Other Studies

4 other study(ies) available for hc-067047 and Pain

ArticleYear
Sensitization of transient receptor potential vanilloid 4 and increasing its endogenous ligand 5,6-epoxyeicosatrienoic acid in rats with monoiodoacetate-induced osteoarthritis.
    Pain, 2018, Volume: 159, Issue:5

    Transient receptor potential vanilloid 4 (TRPV4) receptor modulates pain, and this has been noted in several animal models. However, the involvement of TRPV4 in osteoarthritic (OA) pain remains poorly understood. This study assessed the functional changes in TRPV4 and the expression of its endogenous ligand 5,6-epoxyeicosatrienoic acid (5,6-EET) in a rat monoiodoacetate (MIA)-induced OA pain model (MIA rats). Monoiodoacetate-treated rats showed reduced grip strength as compared to sham-treated rats, and this loss in function could be recovered by the intraarticular administration of a TRPV4 antagonist (HC067047 or GSK2193874). By contrast, the intraarticular administration of the TRPV4 agonist, GSK1016790A, increased the pain-related behaviors in MIA rats but not in sham rats. TRPV4 expression was not increased in knee joints of MIA rats; however, the levels of phosphorylated TRPV4 at Ser824 were increased in dorsal root ganglion neurons. In addition, 5,6-EET was increased in lavage fluids from the knee joints of MIA rats and in meniscectomy-induced OA pain model rats. 5,6-EET and its metabolite were also detected in synovial fluids from patients with OA. In conclusion, TRPV4 was sensitized in the knee joints of MIA rats through phosphorylation in dorsal root ganglion neurons, along with an increase in the levels of its endogenous ligand 5,6-EET. The analgesic effects of the TRPV4 antagonist in the OA pain model rats suggest that TRPV4 may be a potent target for OA pain relief.

    Topics: Animals; Arthritis, Experimental; Disease Models, Animal; Ganglia, Spinal; Hand Strength; Iodoacetic Acid; Leucine; Male; Morpholines; Neurons; Osteoarthritis; Pain; Pain Measurement; Phosphorylation; Pyrroles; Rats; Rats, Sprague-Dawley; Sulfonamides; TRPV Cation Channels

2018
Alcohol and high fat induced chronic pancreatitis: TRPV4 antagonist reduces hypersensitivity.
    Neuroscience, 2015, Dec-17, Volume: 311

    The pathogenesis of pain in chronic pancreatitis is poorly understood, and its treatment can be a major clinical challenge. Surgical and other invasive methods have variable outcomes that can be unsatisfactory. Therefore, there is a great need for further discovery of the pathogenesis of pancreatitis pain and new therapeutic targets. Human and animal studies indicate a critical role for oxidative stress and activation of transient receptor potential (TRP) cation channel subfamily members TRPV1 and TRPA1 on pancreatic nociceptors in sensitization mechanisms that result in pain. However, the in vivo role of transient receptor potential cation channel subfamily V member 4 (TRPV4) in chronic pancreatitis needs further evaluation. The present study characterized a rat alcohol/high fat diet (AHF)-induced chronic pancreatitis model with hypersensitivity, fibrotic pathology, and fat vacuolization consistent with the clinical syndrome. The rats with AHF-induced pancreatitis develop referred visceral pain-like behaviors, i.e. decreased hindpaw mechanical thresholds and shortened abdominal and hindpaw withdrawal latency to heat. In this study, oxidative stress was characterized as well as the role of TRPV4 in chronic visceral hypersensitivity. Lipid peroxidase and oxidative stress were indicated by increased plasma thiobarbituric acid reactive substances (TBARS) and diminished pancreatic manganese superoxide dismutase (MnSOD). The secondary sensitization associated with AHF-induced pancreatitis was effectively alleviated by the TRPV4 antagonist, HC 067047. Similarity of the results to those with the peripherally restricted μ-opiate receptor agonist, loperamide, suggested TRPV4 channel activated peripheral sensitization. This study using a reliable model that provides pre-clinical correlates of human chronic pancreatitis provides further evidence that TRPV4 channel is a potential therapeutic target for treatment of pancreatitis pain.

    Topics: Analgesics; Animals; Diet, High-Fat; Disease Models, Animal; Drug Evaluation, Preclinical; Ethanol; Hot Temperature; Loperamide; Male; Morpholines; Oxidative Stress; Pain; Pain Threshold; Pancreatitis, Chronic; Pyrroles; Random Allocation; Rats, Inbred F344; Receptors, Opioid, mu; Touch; TRPV Cation Channels

2015
The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channels in vitro and pain in vivo.
    British journal of pharmacology, 2014, Volume: 171, Issue:16

    Protease-activated receptor 2 (PAR2) is expressed on nociceptive neurons, and can sensitize transient receptor potential (TRP) ion channels to amplify neurogenic inflammation and pain. The mechanisms by which this occurs are not fully understood. PAR2 causes receptor-operated activation of TRPV4 channels and TRPV4 null mice have attenuated PAR2-stimulated neurogenic inflammation and mechanical hyperalgesia. Here we investigate the intracellular signalling mechanisms underlying PAR2-induced TRPV4 channel activation and pain.. Responses of non-transfected and TRPV4-transfected HEK293 cells to agonists of PAR2 (trypsin and SLIGRL) and TRPV4 channels (GSK1016790A) were determined using calcium imaging. Inhibitors of TRPV4 channels (HC067047), sarcoendoplasmic reticulum calcium transport ATPase (thapsigargin), Gαq (UBO-QIC), tyrosine kinases (bafetinib and dasatinib) or PI3 kinases (wortmannin and LY294002) were used to investigate signalling mechanisms. In vivo effects of tyrosine kinase inhibitors on PAR2 -induced mechanical hyperalgesia were assessed in mice.. In non-transfected HEK293 cells, PAR2 activation transiently increased intracellular calcium ([Ca(2+) ]i ). Functional expression of TRPV4 channels caused a sustained increase of [Ca(2+) ]i , inhibited by HC067047, bafetinib and wortmannin; but not by thapsigargin, UBO-QIC, dasatinib or LY294002. Bafetinib but not dasatinib inhibited PAR2-induced mechanical hyperalgesia in vivo.. This study supports a role for tyrosine kinases in PAR2-mediated receptor-operated gating of TRPV4 channels, independent of Gαq stimulation. The ability of a tyrosine kinase inhibitor to diminish PAR2-induced activation of TRPV4 channels and consequent mechanical hyperalgesia identifies bafetinib (which is in development in oncology) as a potential novel analgesic therapy.

    Topics: Animals; HEK293 Cells; Humans; Hyperalgesia; Leucine; Male; Mice, Inbred C57BL; Morpholines; Oligopeptides; Pain; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Receptor, PAR-2; Sulfonamides; TRPV Cation Channels; Trypsin

2014
TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor.
    Pain, 2014, Volume: 155, Issue:12

    Detection of external irritants by head nociceptor neurons has deep evolutionary roots. Irritant-induced aversive behavior is a popular pain model in laboratory animals. It is used widely in the formalin model, where formaldehyde is injected into the rodent paw, eliciting quantifiable nocifensive behavior that has a direct, tissue-injury-evoked phase, and a subsequent tonic phase caused by neural maladaptation. The formalin model has elucidated many antipain compounds and pain-modulating signaling pathways. We have adopted this model to trigeminally innervated territories in mice. In addition, we examined the involvement of TRPV4 channels in formalin-evoked trigeminal pain behavior because TRPV4 is abundantly expressed in trigeminal ganglion (TG) sensory neurons, and because we have recently defined TRPV4's role in response to airborne irritants and in a model for temporomandibular joint pain. We found TRPV4 to be important for trigeminal nocifensive behavior evoked by formalin whisker pad injections. This conclusion is supported by studies with Trpv4(-/-) mice and TRPV4-specific antagonists. Our results imply TRPV4 in MEK-ERK activation in TG sensory neurons. Furthermore, cellular studies in primary TG neurons and in heterologous TRPV4-expressing cells suggest that TRPV4 can be activated directly by formalin to gate Ca(2+). Using TRPA1-blocker and Trpa1(-/-) mice, we found that both TRP channels co-contribute to the formalin trigeminal pain response. These results imply TRPV4 as an important signaling molecule in irritation-evoked trigeminal pain. TRPV4-antagonistic therapies can therefore be envisioned as novel analgesics, possibly for specific targeting of trigeminal pain disorders, such as migraine, headaches, temporomandibular joint, facial, and dental pain, and irritation of trigeminally innervated surface epithelia.

    Topics: Animals; Butadienes; Cells, Cultured; Disease Models, Animal; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Fixatives; Formaldehyde; Keratinocytes; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Transgenic; Morpholines; Neurons; Nitriles; Pain; Pyrroles; Trigeminal Ganglion; TRPV Cation Channels; Ubiquitin Thiolesterase; Vibrissae

2014