harmine and Melanoma

harmine has been researched along with Melanoma* in 2 studies

Other Studies

2 other study(ies) available for harmine and Melanoma

ArticleYear
The β-carboline Harmine improves the therapeutic benefit of anti-PD1 in melanoma by increasing the MHC-I-dependent antigen presentation.
    Frontiers in immunology, 2022, Volume: 13

    Harmine is a dual-specificity tyrosine-regulated kinase 1A (DYRK1A) inhibitor that displays a number of biological and pharmacological properties. Also referred to as ACB1801 molecule, we have previously reported that harmine increases the presentation of major histocompatibility complex (MHC)-I-dependent antigen on melanoma cells. Here, we show that ACB1801 upregulates the mRNA expression of several proteins of the MHC-I such as Transporter Associated with antigen Processing TAP1 and 2, Tapasin and Lmp2 (hereafter referred to as MHC-I signature) in melanoma cells. Treatment of mice bearing melanoma B16-F10 with ACB1801 inhibits the growth and weight of tumors and induces a profound modification of the tumor immune landscape. Strikingly, combining ACB1801 with anti-PD1 significantly improves its therapeutic benefit in B16-F10 melanoma-bearing mice. These results suggest that, by increasing the MHC-I, ACB1801 can be combined with anti-PD1/PD-L1 therapy to improve the survival benefit in cancer patients displaying a defect in MHC-I expression. This is further supported by data showing that

    Topics: Animals; Antigen Presentation; Blood Group Antigens; Carbolines; Harmine; Histocompatibility Antigens; Major Histocompatibility Complex; Melanoma; Mice

2022
Complexation with β-cyclodextrin enhances apoptosis-mediated cytotoxic effect of harman in chemoresistant BRAF-mutated melanoma cells.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2020, Jul-01, Volume: 150

    Harman, a natural β-carboline alkaloid, has recently gained considerable interest due to its anticancer properties. However, its physicochemical characteristics and poor oral bioavailability have been limiting factors for its pharmaceutical development. In this paper, we described the complexation of harman (HAR) with β-cyclodextrin (βCD) as a promising alternative to improve its solubility and consequently its cytotoxic effect in chemoresistant melanoma cells (A2058 cell line). Inclusion complexes (βCD-HAR) were prepared using a simple method and then characterized by FTIR, NMR and SEM techniques. Through in silico studies, the mechanism of complexation of HAR with βCD was elucidated in detail. Both HAR and βCD-HAR promoted cytotoxicity, apoptosis, cell cycle arrest and inhibition of cell migration in melanoma cells. Interestingly, complexation of HAR with βCD enhanced its pro-apoptotic effect by increasing of caspase-3 activity (p < 0.05), probably due to an improvement in HAR solubility. In addition, HAR and βCD-HAR sensitized A2058 cells to vemurafenib, dacarbazine and 5FU treatments, potentializing their cytotoxic activity. These findings suggest that complexation of HAR with natural polymers such as βCD can be useful to improve its bioavailability and antimelanoma activity.

    Topics: Antineoplastic Agents; Apoptosis; beta-Cyclodextrins; Cell Line, Tumor; Cell Movement; Cell Survival; Drug Resistance, Neoplasm; Harmine; Humans; Melanoma; Molecular Dynamics Simulation; Mutation; Proto-Oncogene Proteins B-raf; Skin Neoplasms

2020