harman has been researched along with Neoplasms* in 6 studies
3 review(s) available for harman and Neoplasms
Article | Year |
---|---|
β-Carbolines as potential anticancer agents.
β-Carbolines are indole alkaloids having a tricyclic pyrido[3,4-b]indole ring in their structure. Since the isolation of first β-carboline from Peganum harmala in 1841, the isolation and synthesis of various β-carboline derivatives surged in the following centuries. β-Carboline derivatives due to their widespread availability from natural sources, structural flexibility, quick reactivity and interaction with varied anticancer targets such as DNA (intercalation, groove binding, etc.), enzymes (GPX4, topoisomerases, kinases, etc.) and proteins (tubulin, ABCG2/BRCP1, etc.) have established themselves as promising lead compounds for the synthesis of various anticancer active agents. The current review covers the synthesis and isolation, anticancer activity, mechanism of action and SAR of various β-carboline containing molecules, its derivatives and congeners. Topics: Antineoplastic Agents; Carbolines; Cyclin-Dependent Kinases; DNA Topoisomerases; Humans; Intercalating Agents; Neoplasms; Plants; Proto-Oncogene Proteins B-raf; Tubulin | 2021 |
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target. Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Humans; Lipogenesis; Neoplasms; Oxidative Stress; Pentose Phosphate Pathway; Phosphogluconate Dehydrogenase; Protein Serine-Threonine Kinases; Ribulosephosphates; Signal Transduction | 2015 |
Possible genotoxic carcinogens in foods in relation to cancer causation.
Topics: Animals; Breast Neoplasms; Carbolines; Carcinogens, Environmental; Cattle; Colonic Neoplasms; Cooking; Food; Harmine; Head and Neck Neoplasms; Humans; Imidazoles; Male; Meat; Mutagens; Neoplasms; Nitrates; Nitrites; Nitrosamines; Prostatic Neoplasms | 1983 |
3 other study(ies) available for harman and Neoplasms
Article | Year |
---|---|
Supramolecular interaction of a cancer cell photosensitizer in the nanocavity of cucurbit[7]uril: A spectroscopic and calorimetric study.
The interaction of small biologically active molecules in the nanocavity of supramolecular host is very interesting and thriving research area. In the presence of supramolecular host the absorption and emission properties of small biologically active molecules were modulated several folds compared to bulk solution. In this study we have investigated the supramolecular interaction of a cancer cell photosensitizer molecule harmane in the presence of cucurbit[7]uril (CB7) as host in aqueous buffer solution (pH∼7.2). We have used steady state absorption, emission and time resolved fluorescence spectroscopy techniques. The thermodynamics of the binding between harmane in the nanochannel of CB7 were studied by using isothermal titration calorimetry (ITC) method. The emission properties of harmane are modulated several fold in the presence of CB7. ITC study indicates that the complexation between harmane and CB7 are enthalpically favourable. Topics: Bridged-Ring Compounds; Calorimetry; Harmine; Imidazoles; Nanostructures; Neoplasms; Photosensitizing Agents; Spectrometry, Fluorescence | 2015 |
Cancer and blood concentrations of the comutagen harmane in essential tremor.
Blood concentrations of harmane, a tremor-producing neurotoxin, are elevated in essential tremor (ET). Harmane is also a comutagen. Using a case-control design, we compared the prevalence of cancer in ET cases vs. controls, and determined whether blood harmane concentrations are elevated among ET cases with cancer. 66/267 (24.7%) ET cases vs. 55/331 (16.6%) controls had cancer (adjusted OR 1.52, 95% CI 1.01-2.30, P = 0.04). Among specific cancer types, colon cancer was more prevalent in ET cases than controls (2.6% vs. 0.6%, P = 0.04). Log blood harmane concentration was higher in ET cases vs. controls (P = 0.02) and in participants with vs. without cancer (P = 0.02). Log blood harmane concentration was highest in ET cases with cancer when compared with other groups (P = 0.009). These links between cancer and ET and between high blood harmane and cancer in ET deserve further study. Topics: Aged; Chi-Square Distribution; Essential Tremor; Female; Harmine; Humans; Male; Middle Aged; Neoplasms | 2008 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded new insight into brain cancer. However, the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs, which we refer to as the 'ground state', remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology, so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation, we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer. Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |