ha-1100 and Hypoxia

ha-1100 has been researched along with Hypoxia* in 2 studies

Other Studies

2 other study(ies) available for ha-1100 and Hypoxia

ArticleYear
Role of Rho-kinase in mediating contraction of chicken embryo femoral arteries.
    Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology, 2010, Volume: 180, Issue:3

    Rho-kinase-dependent Ca2+ sensitization is an essential process for contraction of mammalian vascular smooth muscle but the information about its effects in non-mammalian vessels is scarce. We aimed to investigate, using the Rho-kinase inhibitor hydroxyfasudil, the potential role of the Rho-kinase pathway of Ca2+ sensitization in depolarization- and agonist-mediated contraction of chicken embryo (at day 19 of the 21 days of incubation) femoral arteries. Contraction elicited by KCl (125 mM) comprised two phases (phasic and tonic contraction), both of which were abolished in the absence of extracellular Ca2+. Hydroxyfasudil (10 microM) left the initial phasic component nearly intact but abolished the tonic component. Hydroxyfasudil also induced a marked impairment of the contractions elicited by phenylephrine (PE), the thromboxane A2 mimetic U46619, and endothelin-1. In contrast, inhibition of protein kinase C (PKC) by chelerythrine did not affect KCl- or PE-induced contractions, indicating lack of participation of PKC-mediated Ca2+ sensitization. Incubation under chronic hypoxia (15% O2 from day 0) impaired embryonic growth but did not significantly affect hydroxyfasudil-mediated relaxation. In summary, our findings are indicative of a role for Rho-kinase activity in depolarization- and agonist-induced force generation in chicken embryo femoral arteries.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Benzophenanthridines; Body Weight; Calcium; Chick Embryo; Egtazic Acid; Endothelin-1; Enzyme Inhibitors; Femoral Artery; Hypoxia; NG-Nitroarginine Methyl Ester; Oxadiazoles; Phenylephrine; Phorbol 12,13-Dibutyrate; Potassium Chloride; Protein Kinase C; Protein Kinase Inhibitors; Quinoxalines; rho-Associated Kinases; Vasoconstriction

2010
Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection.
    Stroke, 2005, Volume: 36, Issue:10

    Endothelium-derived nitric oxide (NO) plays a pivotal role in vascular protection. The Rho kinase (ROCK) inhibitor, hydroxyfasudil, prevents the downregulation of endothelial NO synthase (eNOS) under hypoxic conditions. However, it is unknown whether inhibition of ROCK can attenuate ischemia-induced endothelial dysfunction and tissue damage in vivo.. Human vascular endothelial cells were treated with increasing concentrations of hydroxyfasudil (0.1 to 100 micromol/L) and eNOS expression and activity were measured. To determine the physiological relevance of eNOS regulation by ROCK, we administered fasudil, which is metabolized to hydroxyfasudil in vivo, to mice for 2 days before subjecting them to middle cerebral artery occlusion. Cerebral blood flow, cerebral infarct size, and neurologic deficit were measured.. In a concentration-dependent manner, hydroxyfasudil increased eNOS mRNA and protein expression, resulting in a 1.9- and 1.6-fold increase, respectively, at 10 micromol/L (P<0.05 for both). This correlated with a 1.5- and 2.3-fold increase in eNOS activity and NO production, respectively (P<0.05 for both). Fasudil increased cerebral blood flow to both ischemic and nonischemic brain areas, reduced cerebral infarct size by 33%, and improved neurologic deficit score by 37% (P<0.05). This correlated with inhibition of brain and vascular ROCK activity and increased eNOS expression and activity. Another ROCK inhibitor, Y-27632, also showed similar effects. The neuroprotective effects of fasudil were absent in eNOS-deficient mice.. These findings indicate that the neuroprotective effect of ROCK inhibition is mediated by endothelium-derived NO and suggest that ROCK may be an important therapeutic target for ischemic stroke.

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Amides; Analysis of Variance; Animals; Antihypertensive Agents; Aorta; Blotting, Northern; Blotting, Western; Brain Ischemia; Cattle; Cell Line; Cells, Cultured; Cerebrovascular Circulation; Dose-Response Relationship, Drug; Down-Regulation; Endothelium, Vascular; Enzyme Inhibitors; Humans; Hypoxia; Infarction, Middle Cerebral Artery; Intracellular Signaling Peptides and Proteins; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Protein Serine-Threonine Kinases; Pyridines; Regional Blood Flow; rho-Associated Kinases; RNA, Messenger; Stroke; Time Factors; Umbilical Veins; Up-Regulation

2005