ha-1100 has been researched along with Brain-Edema* in 1 studies
1 other study(ies) available for ha-1100 and Brain-Edema
Article | Year |
---|---|
Inhibition of Rho kinase by hydroxyfasudil attenuates brain edema after subarachnoid hemorrhage in rats.
The blood-brain barrier (BBB) disruption and brain edema are important pathophysiologies of early brain injury after subarachnoid hemorrhage (SAH). This study is to evaluate whether Rho kinase (Rock) enhances BBB permeability via disruption of tight junction proteins during early brain injury. Adult male rats were assigned to five groups; Sham-operated, SAH treated with saline, a Rock inhibitor hydroxyfasudil (HF) (10 mg/kg) treatment at 0.5 h after SAH, HF treatment at 0.5 and 6 h (10 mg/kg, each) after SAH, and another Rock inhibitor Y27632 (10 mg/kg) treatment at 0.5 h after SAH. The perforation model of SAH was performed and neurological score and brain water content were evaluated 24 and 72 h after surgery. Evans blue extravasation, Rock activity assay, and western blotting analyses were evaluated 24 h after surgery. Treatment of HF significantly improved neurological scores 24 h after SAH. Single treatment with HF and Y27632, and two treatments with HF reduced brain water content in the ipsilateral hemisphere. HF reduced Evans blue extravasation in the ipsilateral hemisphere after SAH. Rock activity increased 24 h after SAH, and HF reversed the activity. SAH significantly decreased the levels of tight junction proteins, occludin and zonula occludens-1 (ZO-1), and HF preserved the levels of occluding and ZO-1 in ipsilateral hemisphere. In conclusion, HF attenuated BBB permeability after SAH, possibly by protection of tight junction proteins. Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Amides; Animals; Blood-Brain Barrier; Blotting, Western; Body Water; Brain Chemistry; Brain Edema; Enzyme Inhibitors; Functional Laterality; Male; Membrane Proteins; Neurosurgical Procedures; Occludin; Phosphoproteins; Pyridines; Rats; Rats, Sprague-Dawley; rho-Associated Kinases; Subarachnoid Hemorrhage; Tight Junctions; Treatment Outcome; Zonula Occludens-1 Protein | 2012 |