h-89 and Hyperglycemia

h-89 has been researched along with Hyperglycemia* in 2 studies

Other Studies

2 other study(ies) available for h-89 and Hyperglycemia

ArticleYear
Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a.
    American journal of physiology. Cell physiology, 2013, Volume: 304, Issue:6

    Hyperglycemia-induced cardiomyocyte apoptosis contributes to diabetic cardiomyopathy. Glucagon-like peptide-1 (Glp1) receptor (Glp1r) agonists improve cardiac function and survival in response to ischemia-reperfusion and myocardial infarction. The present studies assessed whether Glp1r activation exerts direct cardioprotective effects in response to hyperglycemia. Treatment with the Glp1r agonist Exendin-4 attenuated apoptosis in neonatal rat ventricular cardiomyocytes cultured in high (33 mM) glucose. This protective effect was mimicked by the cAMP inducer forskolin. The Exendin-4 protective effect was blocked by the Glp1r antagonist Exendin(9-39) or the PKA antagonist H-89. Exendin-4 also protected cardiomyocytes from hydrogen peroxide (H2O2)-induced cell death. Cardiomyocyte protection by Exendin-4 was not due to reduced reactive oxygen species levels. Instead, Exendin-4 treatment reduced endoplasmic reticulum (ER) stress, demonstrated by decreased expression of glucose-regulated protein-78 (GRP78) and CCAT/enhancer-binding homologous protein (CHOP). Reduced ER stress was not due to activation of the unfolded protein response, indicating that Exendin-4 directly prevents ER stress. Exendin-4 treatment selectively protected cardiomyocytes from thapsigargin- but not tunicamycin-induced death. This suggests that Exendin-4 attenuates thapsigargin-mediated inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase-2a (SERCA2a). High glucose attenuates SERCA2a function by reducing SERCA2a mRNA and protein levels, but Exendin-4 treatment prevented this reduction. Exendin-4 treatment also enhanced phosphorylation of the SERCA2a regulator phospholamban (PLN), which would be expected to stimulate SERCA2a activity. In sum, Glp1r activation attenuates high glucose-induced cardiomyocyte apoptosis in association with decreased ER stress and markers of enhanced SERCA2a activity. These findings identify a novel mechanism whereby Glp1-based therapies could be used as treatments for diabetic cardiomyopathy.

    Topics: Animals; Apoptosis; Calcium-Binding Proteins; Cells, Cultured; Colforsin; Diabetic Cardiomyopathies; Endoplasmic Reticulum Stress; Enzyme Activation; Exenatide; Glucagon-Like Peptide-1 Receptor; Glucose; Heat-Shock Proteins; HSP70 Heat-Shock Proteins; Hydrogen Peroxide; Hyperglycemia; Hypoglycemic Agents; Isoquinolines; Membrane Proteins; Myocytes, Cardiac; Oxidative Stress; Peptide Fragments; Peptides; Phosphorylation; Protein Kinase Inhibitors; Rats; Receptors, Glucagon; RNA, Messenger; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sulfonamides; Thapsigargin; Transcription Factor CHOP; Tunicamycin; Unfolded Protein Response; Venoms

2013
20-HETE induces hyperglycemia through the cAMP/PKA-PhK-GP pathway.
    Molecular endocrinology (Baltimore, Md.), 2012, Volume: 26, Issue:11

    We previously generated cytochrome P450 4F2 (CYP4F2) transgenic mice and showed high 20-hydroxyeicosatetraenoic acid (20-HETE) production, which resulted in an elevation of blood pressure. However, it was unclear whether 20-HETE affected glucose metabolism. We measured fasting plasma glucose, insulin, hepatic CYP4F2 expression, and 20-HETE production by hepatic microsomes, and hepatic 20-HETE levels in transgenic mice. We also assessed glycogen phosphorylase (GP) activity and the cAMP/protein kinase A (PKA)-phosphorylase kinase (PhK)-GP pathway, as well as expressions of insulin receptor substrate 1 and glucose transporters in vivo and in vitro. The transgenic mice had overexpressed hepatic CYP4F2, high hepatic 20-HETE and fasting plasma glucose levels but normal insulin level. The GP activity was increased and the cAMP/PKA-PhK-GP pathway was activated in the transgenic mice compared with wild-type mice. Moreover, these alterations were eliminated with the addition of N-hydroxy-N'-(4-butyl-2 methylphenyl) formamidine, which is a selective 20-HETE inhibitor. The results were further validated in Bel7402 cells. In addition, the transgenic mice had functional insulin signaling, and 20-HETE had no effect on insulin signaling in Bel7402 cells, excluding that the observed hyperglycemia in CYP4F2 transgenic mice resulted from insulin dysfunction, because the target tissues were sensitive to insulin. Our study suggested that 20-HETE can induce hyperglycemia, at least in part, through the cAMP/PKA-PhK-GP pathway but not through the insulin-signaling pathway.

    Topics: Amidines; Animals; Blood Glucose; Cell Line; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cytochrome P-450 Enzyme System; Glucose Transporter Type 1; Glycogen Phosphorylase; Hydroxyeicosatetraenoic Acids; Hyperglycemia; Hypertension; Insulin Receptor Substrate Proteins; Isoquinolines; Liver; Male; Mice; Mice, Transgenic; Phosphorylase Kinase; Phosphorylation; Signal Transduction; Sulfonamides

2012