gwl-78 has been researched along with Disease-Models--Animal* in 1 studies
1 other study(ies) available for gwl-78 and Disease-Models--Animal
Article | Year |
---|---|
GC-targeted C8-linked pyrrolobenzodiazepine-biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models.
DNA binding 4-(1-methyl-1H-pyrrol-3-yl)benzenamine (MPB) building blocks have been developed that span two DNA base pairs with a strong preference for GC-rich DNA. They have been conjugated to a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) molecule to produce C8-linked PBD-MPB hybrids that can stabilize GC-rich DNA by up to 13-fold compared to AT-rich DNA. Some have subpicomolar IC50 values in human tumor cell lines and in primary chronic lymphocytic leukemia cells, while being up to 6 orders less cytotoxic in the non-tumor cell line WI38, suggesting that key DNA sequences may be relevant targets in these ultrasensitive cancer cell lines. One conjugate, 7h (KMR-28-39), which has femtomolar activity in the breast cancer cell line MDA-MB-231, has significant dose-dependent antitumor activity in MDA-MB-231 (breast) and MIA PaCa-2 (pancreatic) human tumor xenograft mouse models with insignificant toxicity at therapeutic doses. Preliminary studies suggest that 7h may sterically inhibit interaction of the transcription factor NF-κB with its cognate DNA binding sequence. Topics: Animals; Antineoplastic Agents; Benzodiazepines; Cell Line, Tumor; Disease Models, Animal; Drug Screening Assays, Antitumor; Fluorescence Resonance Energy Transfer; GC Rich Sequence; Humans; In Vitro Techniques; Magnetic Resonance Spectroscopy; Mice; Models, Molecular; Molecular Structure; NF-kappa B; Spectrometry, Mass, Electrospray Ionization | 2013 |