gw9662 has been researched along with Prostatic-Neoplasms* in 5 studies
5 other study(ies) available for gw9662 and Prostatic-Neoplasms
Article | Year |
---|---|
Lycopene inhibits the proliferation of androgen-dependent human prostate tumor cells through activation of PPARγ-LXRα-ABCA1 pathway.
The activation of nuclear receptors, peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor alpha (LXRα), has been shown to inhibit the growth of prostate cancer cells. This study examined whether the anti-proliferative effect of lycopene on androgen-dependent human prostate cancer (LNCaP) cells involves the up-regulation of the expression of PPARγ and LXRα. As expected, lycopene treatment (2.5-10 μM) significantly inhibited the proliferation of LNCaP cells during incubation for 96 h. Lycopene significantly increased the protein and mRNA expression of PPARγ and LXRα at 24 and 48 h, while the increased in the expression of ATP-binding cassette transporter 1 (ABCA1) was only evident 96 h. In addition, lycopene significantly decreased cellular total cholesterol levels and increased apoA1 protein expression at 96 h. Incubation of LNCaP cells with lycopene (10 μM) in the presence (20 μM) of a specific antagonist of PPARγ (GW9662) and LXRα (GGPP) restored the proliferation of LNCaP cells to the control levels and significantly suppressed protein expression of PPARγ and LXRα as well as increased cellular total cholesterol levels. LXRα knockdown by siRNA against LXRα significantly enhanced the proliferation of LNCaP cells, whereas si-LXRα knockdown followed by incubation with lycopene (10 μM) restored the proliferation to the control level. The present study is the first to demonstrate that the anti-proliferative effect of lycopene on LNCaP cells involves the activation of the PPARγ-LXRα-ABCA1 pathway, leading to reduced cellular total cholesterol levels. Topics: Androgens; Anilides; Apolipoprotein A-I; ATP Binding Cassette Transporter 1; ATP-Binding Cassette Transporters; Carotenoids; Cell Line, Tumor; Cell Proliferation; Cholesterol; Gene Expression Regulation; Humans; Liver X Receptors; Lycopene; Male; Metabolic Networks and Pathways; Orphan Nuclear Receptors; PPAR gamma; Prostatic Neoplasms; RNA, Small Interfering; Up-Regulation | 2012 |
Anti-proliferative effect of a putative endocannabinoid, 2-arachidonylglyceryl ether in prostate carcinoma cells.
Endocannabinoids (ECs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), inhibit proliferation of carcinoma cells. Several enzymes hydrolyze ECs to reduce endogenous EC concentrations and produce eicosanoids that promote cell growth. In this study, we determined the effects of EC hydrolysis inhibitors and a putative EC, 2-arachidonylglyceryl ether (noladin ether, NE) on proliferation of prostate carcinoma (PC-3, DU-145, and LNCaP) cells. PC-3 cells had the least specific hydrolysis activity for AEA and administration of AEA effectively inhibited cell proliferation. The proliferation inhibition was blocked by SR141716A (a selective CB1R antagonist) but not SR144528 (a selective CB2R antagonist), suggesting a CB1R-mediated inhibition mechanism. On the other hand, specific hydrolysis activity for 2-AG was high and 2-AG inhibited proliferation only in the presence of EC hydrolysis inhibitors. NE inhibited proliferation in a concentration-dependent manner; however, SR141716A, SR144528 and pertussis toxin did not block the NE-inhibited proliferation, suggesting a CBR-independent mechanism of NE. A peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662 did not block the NE-inhibited proliferation, suggesting that PPARγ was not involved. NE also induced cell cycle arrest in G(0)/G(1) phase in PC-3 cells. NE inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB p65) and down-regulated the expression of cyclin D1 and cyclin E in PC-3 cells, suggesting the NF-κB/cyclin D and cyclin E pathways are involved in the arrest of G1 cell cycle and inhibition of cell growth. These results indicate therapeutic potentials of EC hydrolysis inhibitors and the enzymatically stable NE in prostate cancer. Topics: Anilides; Antineoplastic Agents; Cannabinoid Receptor Modulators; Cell Line, Tumor; Cell Proliferation; Cyclin D1; Cyclin E; Endocannabinoids; Glycerides; Humans; Male; NF-kappa B; PPAR gamma; Prostate; Prostatic Neoplasms | 2011 |
PPARgamma1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells.
Diets high in (n-3) PUFA decrease colon cancer development and suppress colon tumor growth, but the molecular mechanism through which these compounds act is largely unknown. We sought to determine whether PPARgamma1 serves as a molecular link between the physiological actions of eicosapentaenoic acid (EPA) in human colon cancer cells (HT-29). At nutritionally relevant concentrations, EPA stimulated a PPAR response element (PPRE) reporter assay in a dose-responsive manner in HT-29 cells. Cotreatment with GW9662 (GW), a PPARgamma antagonist, significantly inhibited this effect, whereas overexpressing the receptor enhanced it. EPA also stimulated the PPRE reporter in a PPARgamma negative cancer cell line (22Rv1) when the cells were cotransfected with a PPARgamma1 expression plasmid and this effect was again inhibited by GW. Furthermore, in vitro incubation of EPA with PPARgamma1 enhanced binding of the protein to DNA containing a PPRE. Next, we sought to determine whether EPA or a prostaglandin formed from EPA is the functional ligand of PPARgamma. Cotreatment in HT-29 and 22Rv1 cells with EPA and acetyl salicylic acid, an inhibitor of cyclooxygenase activity, activated the PPRE reporter at levels similar to EPA alone, suggesting that EPA itself is a ligand of PPARgamma. Finally, EPA suppressed HT-29 cell growth and this effect was significantly reversed by the addition of GW, suggesting that in part the physiological actions of EPA are the result of PPARgamma activation. These studies identify PPARgamma as a molecular mediator of (n-3) PUFA actions in colon cancer cells. Topics: Anilides; Cell Proliferation; Colonic Neoplasms; Eicosapentaenoic Acid; Gene Expression Regulation; HT29 Cells; Humans; Male; PPAR gamma; Prostatic Neoplasms; Protein Binding; Response Elements; Rosiglitazone; Thiazolidinediones | 2008 |
Neuroendocrine transdifferentiation induced by VPA is mediated by PPARgamma activation and confers resistance to antiblastic therapy in prostate carcinoma.
Prostate cancer (PCa) is the most commonly diagnosed cancer in men in the Western Countries. When prostatectomy fails to eradicate the primary tumor, PCa is generally refractory to all therapeutic approaches. Valproic acid (VPA) is a promising anticancer agent recently assigned to the class of histone deacetylase (HDAC) inhibitors. However molecular mechanisms underlying VPA action in PCa cells are largely unknown and further experimental validation to prove its potential application in clinic practice is needed.. In our study we show that VPA is a potent inducer of neuro-endocrine transdifferentiation (NET) in androgen receptor null PCa cells, both in vitro and in vivo. NET was an early event detectable through the expression of neuro-endocrine (NE) markers within 72 hr after VPA treatment and it was associated to a reduction in the overall cell proliferation. When we interrupted VPA treatment we observed the recovery in residual cells of the basal proliferation rate both in vitro and in a xenograft model. The NET process was related to Bcl-2 over-expression in non-NE PCa cells and to the activation of PPARgamma in NE cells. The use of specific PPARgamma antagonist was able to reduce significantly the expression of NE markers induced by VPA.. Our data indicate that the use of VPA as monotherapy in PCa has to be considered with extreme caution, since it may induce an unfavorable NET. In order to counteract the VPA-induced NET, the inhibition of PPARgamma may represent a suitable adjuvant treatment strategy and awaits further experimental validation. Topics: Adenocarcinoma; Anilides; Animals; Cell Line, Tumor; Cell Proliferation; Cell Transdifferentiation; Cell Transformation, Neoplastic; Drug Combinations; Enzyme Inhibitors; Histone Deacetylase Inhibitors; Humans; Male; Mice; Mice, Nude; Neurosecretory Systems; PPAR gamma; Prostatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Valproic Acid; Xenograft Model Antitumor Assays | 2008 |
Does the inhibition of c-myc expression mediate the anti-tumor activity of PPAR's ligands in prostate cancer cell lines?
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands seem to induce anticancer effects on prostate cancer cells, but the mechanism is not clear. The effect of PPARgamma ligands omega-6 fatty acids and ciglitazone (2-15 microM)--on proliferation, and apoptosis of LNCaP, PC-3, DU145, CA-K and BPH-K cells was studied. PPARgamma ligands led to: (1) reduction of proliferation (20-50%) of all the studied cell lines, (2) stimulation of differentiation of prostate cancer cells through an increased expression (1.5-3-fold: LNCaP, DU145, BPH-K) or reexpression (PC-3, CA-K) of E-cadherin with parallel inhibition of N-cadherin expression (PC-3, CA-K) and (3) down-regulation (1-2-fold) of beta-catenin and c-myc expression. The selective PPARgamma antagonist GW9662 abolished the effect of those ligands on prostate cancer cells. These results suggest that inhibition of beta-catenin and in effect c-myc expression through activation of PPARgamma may help prostate cancer cells to restore several characteristics of normal prostate cells phenotype. Topics: Anilides; Antineoplastic Agents; Apoptosis; beta Catenin; Cadherins; Cell Differentiation; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Humans; Linoleic Acid; Male; PPAR gamma; Prostatic Neoplasms; Proto-Oncogene Proteins c-myc; Thiazolidinediones | 2007 |