gw9662 and Memory-Disorders

gw9662 has been researched along with Memory-Disorders* in 5 studies

Other Studies

5 other study(ies) available for gw9662 and Memory-Disorders

ArticleYear
The role of PPAR-γ in memory deficits induced by prenatal and lactation alcohol exposure in mice.
    Molecular psychiatry, 2023, Volume: 28, Issue:8

    Patients diagnosed with fetal alcohol spectrum disorder (FASD) show persistent cognitive disabilities, including memory deficits. However, the neurobiological substrates underlying these deficits remain unclear. Here, we show that prenatal and lactation alcohol exposure (PLAE) in mice induces FASD-like memory impairments. This is accompanied by a reduction of N-acylethanolamines (NAEs) and peroxisome proliferator-activated receptor gamma (PPAR-γ) in the hippocampus specifically in a childhood-like period (at post-natal day (PD) 25). To determine their role in memory deficits, two pharmacological approaches were performed during this specific period of early life. Thus, memory performance was tested after the repeated administration (from PD25 to PD34) of: i) URB597, to increase NAEs, with GW9662, a PPAR-γ antagonist; ii) pioglitazone, a PPAR-γ agonist. We observed that URB597 suppresses PLAE-induced memory deficits through a PPAR-γ dependent mechanism, since its effects are prevented by GW9662. Direct PPAR-γ activation, using pioglitazone, also ameliorates memory impairments. Lastly, to further investigate the region and cellular specificity, we demonstrate that an early overexpression of PPAR-γ, by means of a viral vector, in hippocampal astrocytes mitigates memory deficits induced by PLAE. Together, our data reveal that disruptions of PPAR-γ signaling during neurodevelopment contribute to PLAE-induced memory dysfunction. In turn, PPAR-γ activation during a childhood-like period is a promising therapeutic approach for memory deficits in the context of early alcohol exposure. Thus, these findings contribute to the gaining insight into the mechanisms that might underlie memory impairments in FASD patients.

    Topics: Animals; Child; Female; Fetal Alcohol Spectrum Disorders; Humans; Lactation; Memory Disorders; Mice; Pioglitazone; PPAR gamma; Pregnancy; Thiazolidinediones

2023
Losartan modulates brain inflammation and improves mood disorders and memory impairment induced by innate immune activation: The role of PPAR-γ activation.
    Cytokine, 2020, Volume: 125

    In recent years, the role of angiotensin II (Ang II) and Ang II type 1 receptor (AT1) in the crosstalk between the immune system and the central nervous system has received more attention. The present study aimed to investigate the role of losartan, an AT1 receptor blocker, in the modulation of long-lasting adverse effects of repeated systemic lipopolysaccharide (LPS) injection in the brain function. For this purpose, 110 male BALB/c mice were administrated LPS (250 µg/kg) intraperitoneally (i.p.) for seven consecutive days. Mice were i.p. injected with losartan (1 and 3 mg/kg) three days before and during the LPS injection. To determine the role of PPAR-γ activation in the protective actions of losartan, GW9662, a PPAR-γ antagonist, was also co-administrated with losartan. Then, behavioral tests, including Morris water maze (MWM), novel object recognition test, passive avoidance, forced swim test (FST), elevated plus maze, and marble burying task, were conducted. The results demonstrated that losartan improved learning and memory impairment, attenuated anxiety-like behaviors, modulated brain inflammation and oxidative stress, and decreased amyloid-β accumulation. Losartan was unable to improve hippocampal BDNF and IL-10 levels as well as the retention trial in the MWM task and depressive-like behaviors. In addition, the PPAR-γ antagonist did not significantly influence the beneficial effects of losartan. Our findings suggest that AT1R blockade can protect the brain against most long-lasting hallmark effects of systemic inflammation. Also, based on the results, the beneficial actions of losartan were not mediated through PPAR-γ activation.

    Topics: Amyloid beta-Peptides; Angiotensin Receptor Antagonists; Anilides; Animals; Anxiety; Behavior Rating Scale; Brain-Derived Neurotrophic Factor; Depression; Encephalitis; Hippocampus; Immunity, Innate; Injections, Intraperitoneal; Interleukin-10; Lipopolysaccharides; Losartan; Male; Memory Disorders; Mice; Mice, Inbred BALB C; Oxidative Stress; PPAR gamma

2020
Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression.
    Pharmacology, biochemistry, and behavior, 2016, Volume: 148

    Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (p<0.001), decreased OR (p<0.001), substantial CORT increase (p<0.001) and significantly downregulated expression of BDNF in the mPFC (p<0.001), which were attenuated in rats receiving TLM and TLM+GW9662. These data indicate that procognitive effect of ARBs in stressed subjects do not result from PPAR-γ activation, but AT1 blockade and subsequent hypothalamus-pituitary-adrenal axis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade.

    Topics: Angiotensin II Type 1 Receptor Blockers; Anilides; Animals; Benzimidazoles; Benzoates; Body Weight; Brain-Derived Neurotrophic Factor; Corticosterone; Exploratory Behavior; Hippocampus; Hypothalamo-Hypophyseal System; Male; Memory Disorders; Pituitary-Adrenal System; Prefrontal Cortex; Rats; Rats, Wistar; Stress, Psychological; Telmisartan; Up-Regulation

2016
Ameliorative effects of telmisartan on the inflammatory response and impaired spatial memory in a rat model of Alzheimer's disease incorporating additional cerebrovascular disease factors.
    Biological & pharmaceutical bulletin, 2012, Volume: 35, Issue:12

    Telmisartan, an angiotensin type 1 receptor blocker, is used in the management of hypertension to control blood pressure. In addition, telmisartan has a partial agonistic effect on peroxisome proliferator activated receptor γ (PPARγ). Recently, the effects of telmisartan on spatial memory or the inflammatory response were monitored in a mouse model of Alzheimer's disease (AD). However, to date, no studies have investigated the ameliorative effects of telmisartan on impaired spatial memory and the inflammatory response in an AD animal model incorporating additional cerebrovascular disease factors. In this study, we examined the effect of telmisartan on spatial memory impairment and the inflammatory response in a rat model of AD incorporating additional cerebrovascular disease factors. Rats were subjected to cerebral ischemia and an intracerebroventricular injection of oligomeric or aggregated amyloid-β (Aβ). Oral administration of telmisartan (0.3, 1, 3 mg/kg/d) seven days after ischemia and Aβ treatment resulted in better performance in the eight arm radial maze task in a dose-dependent manner. Telmisartan also reduced tumor necrosis factor α mRNA expression in the hippocampal region of rats with impaired spatial memory. These effects of telmisartan were antagonized by GW9662, an antagonist of PPARγ. These results suggest that telmisartan has ameliorative effects on the impairment of spatial memory in a rat model of AD incorporating additional cerebrovascular disease factors via its anti-inflammatory effect.

    Topics: Alzheimer Disease; Amyloid; Angiotensin II Type 1 Receptor Blockers; Anilides; Animals; Anti-Inflammatory Agents; Benzimidazoles; Benzoates; Brain Ischemia; Cerebrovascular Disorders; Cerebrum; Disease Models, Animal; Dose-Response Relationship, Drug; Hippocampus; Inflammation; Male; Maze Learning; Memory; Memory Disorders; PPAR gamma; Rats; Rats, Wistar; Telmisartan; Tumor Necrosis Factor-alpha

2012
Telmisartan, a partial agonist of peroxisome proliferator-activated receptor gamma, improves impairment of spatial memory and hippocampal apoptosis in rats treated with repeated cerebral ischemia.
    Brain research, 2010, Sep-24, Volume: 1353

    Telmisartan, an angiotensin type 1 receptor blocker (ARB), is used for hypertension to control blood pressure and has been shown to have a partial agonistic effect on peroxisome proliferator-activated receptor gamma (PPARgamma). Recently, the ligand of PPARgamma has been implicated in cerebroprotection due to its anti-inflammatory effect. In this study, we investigated whether telmisartan has a cerebroprotective effect on memory impairment and neuronal cell death induced by repeated cerebral ischemia. Repeated cerebral ischemia (RI: 10 min x 2) significantly induced impairment of spatial memory and hippocampal apoptosis in rats. Fourteen-day pre- and post-ischemic administration of telmisartan (0.3, 1, 3mg/kg/day, p.o.) increased the number of correct choices and reduced the number of errors made in the eight-arm radial maze task in a dose-dependent manner in RI treated rats. TUNEL-positive cells in the hippocampus CA1 areas were also reduced following 14-day administration of telmisartan (3mg/kg/day, p.o.). Seven-day post-ischemic administration of telmisartan improved spatial memory and reduced TUNEL-positive cells while 7-day pre-ischemic administration of telmisartan did not. These effects of telmisartan were inhibited by the PPARgamma antagonist, GW9662. On further experiment, 7-day post-ischemic administration of telmisartan reduced the expression of caspase-3 in the hippocampus, and this effect was also inhibited by GW9662. These results suggest that telmisartan improves memory impairment and reduces neuronal apoptosis via a PPARgamma-dependent caspase-3 inhibiting mechanism. Telmisartan, which has the unique character of having both ARB and PPARgamma agonistic effect, will be useful for preventing memory impairment after cerebrovascular disease.

    Topics: Analysis of Variance; Anilides; Animals; Apoptosis; Benzimidazoles; Benzoates; Brain Ischemia; Caspase 3; Dose-Response Relationship, Drug; Hippocampus; In Situ Nick-End Labeling; Male; Maze Learning; Memory Disorders; PPAR gamma; Rats; Rats, Wistar; Spatial Behavior; Telmisartan; Time Factors

2010