gw9662 and Intracranial-Aneurysm

gw9662 has been researched along with Intracranial-Aneurysm* in 2 studies

Other Studies

2 other study(ies) available for gw9662 and Intracranial-Aneurysm

ArticleYear
Smooth Muscle Peroxisome Proliferator-Activated Receptor γ Plays a Critical Role in Formation and Rupture of Cerebral Aneurysms in Mice In Vivo.
    Hypertension (Dallas, Tex. : 1979), 2015, Volume: 66, Issue:1

    Vascular inflammation plays a critical role in the pathogenesis of cerebral aneurysms. Peroxisome proliferator-activated receptor γ (PPARγ) protects against vascular inflammation and atherosclerosis, whereas dominant-negative mutations in PPARγ promote atherosclerosis and vascular dysfunction. We tested the role of PPARγ in aneurysm formation and rupture. Aneurysms were induced with a combination of systemic infusion of angiotensin-II and local injection of elastase in (1) mice that received the PPARγ antagonist GW9662 or the PPARγ agonist pioglitazone, (2) mice carrying dominant-negative PPARγ mutations in endothelial or smooth muscle cells, and (3) mice that received the Cullin inhibitor MLN4924. Incidence of aneurysm formation, rupture, and mortality was quantified. Cerebral arteries were analyzed for expression of Cullin3, Kelch-like ECH-associated protein 1, nuclear factor (erythroid-derived 2)-like 2, NAD(P)H dehydrogenase (quinone)1 (NQO1), and inflammatory marker mRNAs. Neither pioglitazone nor GW9662 altered the incidence of aneurysm formation. GW9662 significantly increased the incidence of aneurysm rupture, whereas pioglitazone tended to decrease the incidence of rupture. Dominant-negative endothelial-specific PPARγ did not alter the incidence of aneurysm formation or rupture. In contrast, dominant-negative smooth muscle-specific PPARγ resulted in an increase in aneurysm formation (P<0.05) and rupture (P=0.05). Dominant-negative smooth muscle-specific PPARγ, but not dominant-negative endothelial-specific PPARγ, resulted in significant decreases in expression of genes encoding Cullin3, Kelch-like ECH-associated protein 1, and nuclear factor (erythroid-derived 2)-like 2, along with significant increases in tumor necrosis factor-α, monocyte chemoattractant protein-1, chemokine (C-X-C motif) ligand 1, CD68, matrix metalloproteinase-3, -9, and -13. MLN4924 did not alter incidence of aneurysm formation, but increased the incidence of rupture (P<0.05). In summary, endogenous PPARγ, specifically smooth muscle PPARγ, plays an important role in protecting from formation and rupture of experimental cerebral aneurysms in mice.

    Topics: Aneurysm, Ruptured; Angiotensin II; Anilides; Animals; Cerebral Arteries; Endothelium, Vascular; Gene Expression Regulation; Genes, Dominant; Hypertension; Inflammation Mediators; Intracranial Aneurysm; Mice; Mice, Transgenic; Muscle, Smooth, Vascular; Mutation; Myocytes, Smooth Muscle; Organ Specificity; Pancreatic Elastase; Pioglitazone; PPAR gamma; Subarachnoid Hemorrhage; Thiazolidinediones; Up-Regulation; Vasculitis

2015
Protective Role of Peroxisome Proliferator-Activated Receptor-γ in the Development of Intracranial Aneurysm Rupture.
    Stroke, 2015, Volume: 46, Issue:6

    Inflammation is emerging as a key component of the pathophysiology of intracranial aneurysms. Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear hormone receptor of which activation modulates various aspects of inflammation.. Using a mouse model of intracranial aneurysm, we examined the potential roles of PPARγ in the development of rupture of intracranial aneurysm.. A PPARγ agonist, pioglitazone, significantly reduced the incidence of ruptured aneurysms and the rupture rate without affecting the total incidence aneurysm (unruptured aneurysms and ruptured aneurysms). PPARγ antagonist (GW9662) abolished the protective effect of pioglitazone. The protective effect of pioglitazone was absent in mice lacking macrophage PPARγ. Pioglitazone treatment reduced the mRNA levels of inflammatory cytokines (monocyte chemoattractant factor-1, interleukin-1, and interleukin-6) that are primarily produced by macrophages in the cerebral arteries. Pioglitazone treatment reduced the infiltration of M1 macrophage into the cerebral arteries and the macrophage M1/M2 ratio. Depletion of macrophages significantly reduced the rupture rate.. Our data showed that the activation of macrophage PPARγ protects against the development of aneurysmal rupture. PPARγ in inflammatory cells may be a potential therapeutic target for the prevention of aneurysmal rupture.

    Topics: Aneurysm, Ruptured; Anilides; Animals; Cerebral Arteries; Cytokines; Hypoglycemic Agents; Intracranial Aneurysm; Macrophages; Mice; Mice, Knockout; Pioglitazone; PPAR gamma; Thiazolidinediones

2015