gw9662 and Hematoma

gw9662 has been researched along with Hematoma* in 3 studies

Other Studies

3 other study(ies) available for gw9662 and Hematoma

ArticleYear
Pharmacological Activation of RXR-α Promotes Hematoma Absorption via a PPAR-γ-dependent Pathway After Intracerebral Hemorrhage.
    Neuroscience bulletin, 2021, Volume: 37, Issue:10

    Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.

    Topics: Anilides; Cerebral Hemorrhage; Hematoma; Humans; Macrophages; Microglia; Neuroprotection; PPAR gamma; Retinoid X Receptor alpha

2021
Simvastatin accelerates hematoma resolution after intracerebral hemorrhage in a PPARγ-dependent manner.
    Neuropharmacology, 2018, Volume: 128

    To date, the neuroprotective effects of statins on intracerebral hemorrhage (ICH) are not well established. This study explored the effect and potential mechanism of simvastatin treatment on ICH. In the present study, the effects of simvastatin on hematoma absorption, neurological outcome, CD36 expression and microglia polarization were examined in rat model of ICH model. In the meantime, inhibitory effect of PPARγ inhibitor GW9662 was investigated following ICH. Additionally, the effect of simvastatin on PPARγ activation was also investigated in rat ICH model and primary microglia culture. Much more, the role of PPARγ and CD36 in simvastatin-mediated erythrocyte phagocytosis was also detected by using in vivo or in vitro phagocytosis models, respectively. After ICH, simvastatin promoted hematoma absorption and improved neurological outcome after ICH while upregulating CD36 expression and facilitating M2 phenotype polarization in perihematomal microglia. In addition, simvastatin increased PPARγ activation and reinforced microglia-induced erythrocyte phagocytosis in vivo and in vitro. All above effects of simvastatin were abolished by PPARγ inhibitor GW9662. In conclusion, our data suggested that simvastatin could enhance hematoma clearance and attenuate neurological deficits possibly by activating PPARγ.

    Topics: Anilides; Animals; Anticholesteremic Agents; Antigens, CD; Cell Count; Cerebral Hemorrhage; Disease Models, Animal; Electrophoretic Mobility Shift Assay; Enzyme Inhibitors; Hematoma; Male; Microglia; Neurologic Examination; Phagocytosis; PPAR gamma; Protein Transport; Rats; Rats, Sprague-Dawley; Simvastatin; Time Factors

2018
PPARγ-induced upregulation of CD36 enhances hematoma resolution and attenuates long-term neurological deficits after germinal matrix hemorrhage in neonatal rats.
    Neurobiology of disease, 2016, Volume: 87

    Germinal matrix hemorrhage remains the leading cause of morbidity and mortality in preterm infants in the United States with little progress made in its clinical management. Survivors are often afflicted with long-term neurological sequelae, including cerebral palsy, mental retardation, hydrocephalus, and psychiatric disorders. Blood clots disrupting normal cerebrospinal fluid circulation and absorption after germinal matrix hemorrhage are thought to be important contributors towards post-hemorrhagic hydrocephalus development. We evaluated if upregulating CD36 scavenger receptor expression in microglia and macrophages through PPARγ stimulation, which was effective in experimental adult cerebral hemorrhage models and is being evaluated clinically, will enhance hematoma resolution and ameliorate long-term brain sequelae using a neonatal rat germinal matrix hemorrhage model. PPARγ stimulation (15d-PGJ2) increased short-term PPARγ and CD36 expression levels as well as enhanced hematoma resolution, which was reversed by a PPARγ antagonist (GW9662) and CD36 siRNA. PPARγ stimulation (15d-PGJ2) also reduced long-term white matter loss and post-hemorrhagic ventricular dilation as well as improved neurofunctional outcomes, which were reversed by a PPARγ antagonist (GW9662). PPARγ-induced upregulation of CD36 in macrophages and microglia is, therefore, critical for enhancing hematoma resolution and ameliorating long-term brain sequelae.

    Topics: Anilides; Animals; Animals, Newborn; Brain; CD36 Antigens; Central Nervous System Agents; Disease Models, Animal; Gene Knockdown Techniques; Hematoma; Intracranial Hemorrhages; Macrophage Activation; Microglia; Neuroprotective Agents; PPAR gamma; Prostaglandin D2; Random Allocation; Rats, Sprague-Dawley; RNA, Small Interfering; Up-Regulation

2016