gw9662 has been researched along with Glioblastoma* in 6 studies
6 other study(ies) available for gw9662 and Glioblastoma
Article | Year |
---|---|
Alpinumisoflavone suppresses human Glioblastoma cell growth and induces cell cycle arrest through activating peroxisome proliferator-activated receptor-γ.
As a common subtype of malignant gliomas, glioblastoma multiforme (GBM) is associated with poor prognosis. This study is aimed to examine the anticancer activities of alpinumisoflavone (AIF) and its underlying mechanisms. Our results demonstrated that AIF inhibited the proliferation of GBM cells (U373 and T98G) in a time and dose-dependent manner. In addition, flow cytometry analysis not only confirmed AIF arrested cell cycle at the G0/G1 phase but also the induced apoptosis of U373 and T98G cells. Western blotting also confirmed that AIF altered the expression levels of cell cycle-related proteins. Further mechanism studies revealed that AIF inhibited cell proliferation, induced G0/G1 phase arrest and induced apoptosis of U373 and T98G cells through activating PPARγ, as evidenced by the fact that GW9662 (PPARγ inhibitor) could effectively reverse the effects of AIF on U373 and T98G cells. Furthermore, the in vivo study also revealed that AIF suppressed tumor growth and caused cell cycle arrest. Collectively, these results highlighted the potential use of AIF in the treatment of GBM. Topics: Anilides; Apoptosis; Cell Cycle; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; Glioblastoma; Humans; Isoflavones; PPAR gamma | 2020 |
Combination Treatment with PPAR
PPAR Topics: 14-3-3 Proteins; Adaptor Proteins, Signal Transducing; Anilides; Apoptosis; Apoptosis Regulatory Proteins; Cell Differentiation; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Glioblastoma; Humans; Ligands; Matrix Metalloproteinase 2; Neoplastic Stem Cells; PPAR gamma; Signal Transduction; SOXB1 Transcription Factors | 2017 |
The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells.
Glioma cells release glutamate through expression of system xc-, which exchanges intracellular glutamate for extracellular cysteine. Lack of the excitatory amino acid transporter 2 (EAAT2) expression maintains high extracellular glutamate levels in the glioma microenvironment, causing excitotoxicity to surrounding parenchyma. Not only does this contribute to the survival and proliferation of glioma cells, but is involved in the pathophysiology of tumour-associated epilepsy (TAE). We investigated the role of the peroxisome proliferator activated receptor gamma (PPARγ) agonist pioglitazone in modulating EAAT2 expression in glioma cells. We found that EAAT2 expression was increased in a dose dependent manner in both U87MG and U251MG glioma cells. Extracellular glutamate levels were reduced with the addition of pioglitazone, where statistical significance was reached in both U87MG and U251MG cells at a concentration of ≥ 30 μM pioglitazone (p < 0.05). The PPARγ antagonist GW9662 inhibited the effect of pioglitazone on extracellular glutamate levels, indicating PPARγ dependence. In addition, pioglitazone significantly reduced cell viability of U87MG and U251MG cells at ≥ 30 μM and 100 μM (p < 0.05) respectively. GW9662 also significantly reduced viability of U87MG and U251MG cells with 10 μM and 30 μM (p < 0.05) respectively. The effect on viability was partially dependent on PPARγ activation in U87MG cells but not U251MG cells, whereby PPARγ blockade with GW9662 had a synergistic effect. We conclude that PPARγ agonists may be therapeutically beneficial in the treatment of gliomas and furthermore suggest a novel role for these agents in the treatment of tumour associated seizures through the reduction in extracellular glutamate. Topics: Anilides; Animals; Brain; Brain Neoplasms; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Excitatory Amino Acid Transporter 2; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Glioblastoma; Glutamate Plasma Membrane Transport Proteins; Glutamic Acid; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Neoplasm Transplantation; Pioglitazone; PPAR gamma; Rats; Rats, Wistar; Seizures; Thiazolidinediones | 2015 |
A radial glia gene marker, fatty acid binding protein 7 (FABP7), is involved in proliferation and invasion of glioblastoma cells.
Glioblastoma multiforme (GBM) is among the most deadly cancers. A number of studies suggest that a fraction of tumor cells with stem cell features (Glioma Stem-like Cells, GSC) might be responsible for GBM recurrence and aggressiveness. GSC similarly to normal neural stem cells, can form neurospheres (NS) in vitro, and seem to mirror the genetic features of the original tumor better than glioma cells growing adherently in the presence of serum. Using cDNA microarray analysis we identified a number of relevant genes for glioma biology that are differentially expressed in adherent cells and neurospheres derived from the same tumor. Fatty acid-binding protein 7 (FABP7) was identified as one of the most highly expressed genes in NS compared to their adherent counterpart. We found that down-regulation of FABP7 expression in NS by small interfering RNAs significantly reduced cell proliferation and migration. We also evaluated the potential involvement of FABP7 in response to radiotherapy, as this treatment may cause increased tumor infiltration. Migration of irradiated NS was associated to increased expression of FABP7. In agreement with this, in vivo reduced tumorigenicity of GBM cells with down-regulated expression of FABP7 was associated to decreased expression of the migration marker doublecortin. Notably, we observed that PPAR antagonists affect FABP7 expression and decrease the migration capability of NS after irradiation. As a whole, the data emphasize the role of FABP7 expression in GBM migration and provide translational hints on the timing of treatment with anti-FABP7 agents like PPAR antagonists during GBM evolution. Topics: 5' Flanking Region; Anilides; Animals; Base Sequence; Carrier Proteins; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cluster Analysis; Fatty Acid-Binding Protein 7; Gene Expression; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Regulatory Networks; Gene Silencing; Glioblastoma; Humans; Mice; Molecular Sequence Data; Neoplasm Invasiveness; Peroxisome Proliferator-Activated Receptors; Signal Transduction; Tumor Suppressor Proteins | 2012 |
Biomolecular characterization of human glioblastoma cells in primary cultures: differentiating and antiangiogenic effects of natural and synthetic PPARgamma agonists.
Gliomas are the most commonly diagnosed malignant brain primary tumors. Prognosis of patients with high-grade gliomas is poor and scarcely affected by radiotherapy and chemotherapy. Several studies have reported antiproliferative and/or differentiating activities of some lipophylic molecules on glioblastoma cells. Some of these activities in cell signaling are mediated by a class of transcriptional factors referred to as peroxisome proliferator-activated receptors (PPARs). PPARgamma has been identified in transformed neural cells of human origin and it has been demonstrated that PPARgamma agonists decrease cell proliferation, stimulate apoptosis and induce morphological changes and expression of markers typical of a more differentiated phenotype in glioblastoma and astrocytoma cell lines. These findings arise from studies mainly performed on long-term cultured transformed cell lines. Such experimental models do not exactly reproduce the in vivo environment since long-term culture often results in the accumulation of further molecular alterations in the cells. To be as close as possible to the in vivo condition, in the present work we investigated the effects of PPARgamma natural and synthetic ligands on the biomolecular features of primary cultures of human glioblastoma cells derived from surgical specimens. We provide evidence that PPARgamma agonists may interfere with glioblastoma growth and malignancy and might be taken in account as novel antitumoral drugs. Topics: Anilides; Apoptosis; Blotting, Western; Brain Neoplasms; Cell Adhesion; Cell Movement; Cell Proliferation; Cells, Cultured; Fluorescent Antibody Technique; Glioblastoma; Humans; Linoleic Acids, Conjugated; Neovascularization, Pathologic; Nitric Oxide Synthase Type II; PPAR gamma; Reverse Transcriptase Polymerase Chain Reaction; Vascular Endothelial Growth Factor A | 2008 |
Small molecule regulators of autophagy identified by an image-based high-throughput screen.
Autophagy is a lysosome-dependent cellular catabolic mechanism mediating the turnover of intracellular organelles and long-lived proteins. Reduction of autophagy activity has been shown to lead to the accumulation of misfolded proteins in neurons and may be involved in chronic neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. To explore the mechanism of autophagy and identify small molecules that can activate it, we developed a series of high-throughput image-based screens for small-molecule regulators of autophagy. This series of screens allowed us to distinguish compounds that can truly induce autophagic degradation from those that induce the accumulation of autophagosomes as a result of causing cellular damage or blocking downstream lysosomal functions. Our analyses led to the identification of eight compounds that can induce autophagy and promote long-lived protein degradation. Interestingly, seven of eight compounds are FDA-approved drugs for treatment of human diseases. Furthermore, we show that these compounds can reduce the levels of expanded polyglutamine repeats in cultured cells. Our studies suggest the possibility that some of these drugs may be useful for the treatment of Huntington's and other human diseases associated with the accumulation of misfolded proteins. Topics: Autophagy; Calcium Channel Blockers; Cell Line, Tumor; Drug Evaluation, Preclinical; Fluspirilene; Glioblastoma; Green Fluorescent Proteins; Humans; Intracellular Membranes; Loperamide; Microtubule-Associated Proteins; Mycotoxins; Peptides; Phagosomes; Phosphatidylinositol Phosphates; Pimozide; Protein Kinases; Recombinant Fusion Proteins; Sirolimus; Small Molecule Libraries; TOR Serine-Threonine Kinases; Trifluoperazine; Zinc Fingers | 2007 |