gw9662 and Diabetes-Mellitus

gw9662 has been researched along with Diabetes-Mellitus* in 3 studies

Other Studies

3 other study(ies) available for gw9662 and Diabetes-Mellitus

ArticleYear
Telmisartan attenuates hyperglycemia-exacerbated VCAM-1 expression and monocytes adhesion in TNFα-stimulated endothelial cells by inhibiting IKKβ expression.
    Vascular pharmacology, 2016, Volume: 78

    Uncontrolled hyperglycemia accelerates endothelial damage and vascular inflammation caused by proinflammatory cytokines including tumor necrosis factor α (TNFα), which leads to arteriosclerotic cardiovascular diseases such as myocardial infarction. Telmisartan, an angiotensin II type 1 receptor blocker (ARB), is prescribed for treatment of hypertensive patients with concurrent diabetes mellitus (DM). Although a few clinical trials have suggested that telmisartan decreases cardiovascular complications in diabetic patients, the molecular mechanism for the beneficial effects remains elusive. Here, we investigated a molecular mechanism and effects of telmisartan on the expression of vascular cell adhesion molecule-1 (VCAM-1) and attachment of monocytes onto endothelial cells induced by TNFα in hyperglycemia-treated bovine aortic endothelial cells (BAEC). Telmisartan dose-dependently decreased hyperglycemia-aggravated IκB kinase β (IKKβ) expression and nuclear factor-κB (NF-κB) p65-Ser(536) phosphorylation, which accompanied a decrease in VCAM-1 expression and THP-1 monocytes adhesion. Among ARBs, including losartan and fimasartan, only telmisartan showed the inhibitory effects on expression of VCAM-1 and IKKβ, and phosphorylation of NF-κB p65-Ser(536). The telmisartan's beneficial effects were not changed by pretreatment with GW9662, a specific and irreversible peroxisome proliferator-activated receptor γ (PPARγ) antagonist, although GW9662 clearly inhibited rosiglitazone-induced CD36 expression. Finally, ectopic expression of wild type (WT)-IKKβ significantly restored telmisartan-attenuated VCAM-1 expression, NF-κB p65-Ser(536) phosphorylation, and THP-1 monocytes adhesion. Taken together, our findings demonstrate that telmisartan ameliorates hyperglycemia-exacerbated vascular inflammation, at least in part, by decreasing expression of IKKβ and VCAM-1 independently of PPARγ. Telmisartan may be useful for the treatment of DM-associated vascular inflammation and cardiovascular diseases.

    Topics: Angiotensin II Type 1 Receptor Blockers; Anilides; Animals; Benzimidazoles; Benzoates; Cattle; Cell Adhesion; Diabetes Mellitus; Endothelial Cells; Humans; Hyperglycemia; I-kappa B Kinase; Inflammation; Monocytes; PPAR gamma; Rosiglitazone; Telmisartan; Thiazolidinediones; Transcription Factor RelA; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1

2016
Angiogenic response of advanced glycation end products (AGEs) involves PPARgamma.
    Indian journal of biochemistry & biophysics, 2012, Volume: 49, Issue:1

    Diabetes is associated with increased formation of advanced glycation end products (AGEs), which have been implicated in micro and macrovascular complications of diabetes. Our earlier reports showed proangiogenic effect of AGE-bovine serum albumin (BSA). In order to understand the mechanism of AGE-mediated angiogenesis, the possibility of involvement of peroxisome prolifeator activated receptor (PPAR) gamma, a ligand activated transcription factor was examined. The angiogenic effect was studied in chick chorio allantoic membrane (CAM) and by analyzing angiogenic markers in human umbilical vein endothelial cells (HUVECs) in culture. The involvement of PPAR y was investigated using synthetic PPAR gamma agonist GW 1929 and antagonist GW 9662 and by RT-PCR. In CAM assay, PPAR gamma antagonist GW 9662 reversed the AGE-induced effect on vascularity. In HUVECs in culture, GW 9662 reversed the effect of AGE-BSA and decreased the expression of CD 31, E-Selectin and VEGF. RT-PCR analysis showed that treatment with AGE-BSA caused upregulation of PPAR gamma mRNA levels. The reversal of the effect of AGE on angiogenesis by treatment with PPAR gamma antagonists and up-regulation of PPAR gamma gene in HUVECs treated with AGE-BSA suggested the possible involvement of PPAR gamma-dependent downstream pathway in mediating the angiogenic effect of AGE.

    Topics: Angiogenesis Inducing Agents; Anilides; Animals; Benzophenones; Cells, Cultured; Chick Embryo; Chorioallantoic Membrane; Diabetes Mellitus; E-Selectin; Glycation End Products, Advanced; Human Umbilical Vein Endothelial Cells; Humans; Platelet Endothelial Cell Adhesion Molecule-1; PPAR gamma; RNA; Tyrosine; Vascular Endothelial Growth Factor A

2012
Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice.
    Cardiovascular diabetology, 2012, Nov-08, Volume: 11

    Telmisartan is a well-established angiotensin II type 1 receptor blocker that improves insulin sensitivity in animal models of obesity and insulin resistance, as well as in humans. Telmisartan has been reported to function as a partial agonist of the peroxisome proliferator-activated receptor (PPAR) γ, which is also targeted by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase (SIRT1). Here, we investigated the pathways through which telmisartan acts on skeletal muscle, in vitro as well as in vivo.. Nine-week-old male db/db mice were fed a 60% high-fat diet, with orally administrated either vehicle (carboxymethyl-cellulose, CMC), 5 mg/kg telmisartan, or 5 mg/kg telmisartan and 1 mg/kg GW9662, a selective irreversible antagonist of PPARγ, for 5 weeks. Effects of telmisartan on Sirt1 mRNA, AMPK phosphorylation, and NAD+/NADH ratio were determined in C2C12 cultured myocytes.. Telmisartan treatment improved insulin sensitivity in obese db/db mice fed a high-fat diet and led to reduction in the size of hypertrophic pancreatic islets in these mice. Moreover, in vitro treatment with telmisartan led to increased expression of Sirt1 mRNA in C2C12 skeletal muscle cells; the increase in Sirt1 mRNA in telmisartan-treated C2C12 myoblasts occurred concomitantly with an increase in AMPK phosphorylation, an increase in NAD+/NADH ratio, and increases in the mRNA levels of PGC1α, FATP1, ACO, and GLUT4.. Our results indicate that telmisartan acts through a PPARγ-independent pathway, but at least partially exerts its effects by acting directly on skeletal muscle AMPK/SIRT1 pathways.

    Topics: Adipocytes; Administration, Oral; AMP-Activated Protein Kinases; Angiotensin II Type 1 Receptor Blockers; Anilides; Animals; Benzimidazoles; Benzoates; Cell Line; Diabetes Mellitus; Diet, High-Fat; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Activation; Fatty Acid Transport Proteins; Glucose Transporter Type 4; Hypertrophy; Insulin; Islets of Langerhans; Male; Mice; Muscle Fibers, Skeletal; Muscle, Skeletal; NAD; Obesity; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Phosphorylation; PPAR gamma; RNA, Messenger; Signal Transduction; Sirtuin 1; Telmisartan; Time Factors; Trans-Activators; Transcription Factors

2012