gw406381x has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for gw406381x and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
The cyclooxygenase-2 inhibitor GW406381X [2-(4-ethoxyphenyl)-3-[4-(methylsulfonyl)phenyl]-pyrazolo[1,5-b]pyridazine] is effective in animal models of neuropathic pain and central sensitization.
The pathogenic form of the cyclooxygenase (COX) enzyme, COX-2, is also constitutively present in the spinal cord and has been implicated in chronic pain states in rat and man. A number of COX-2 inhibitors, including celecoxib and rofecoxib, are already used in man for the treatment of inflammatory pain. Preclinically, the dual-acting COX-2 inhibitor, GW406381X [2-(4-ethoxyphenyl)-3-[4-(methylsulfonyl)phenyl]-pyrazolo[1,5-b]pyridazine, where X denotes the free base], is as effective as rofecoxib and celecoxib in the rat established Freund's Complete Adjuvant model with an ED(50) of 1.5 mg/kg p.o. compared with 1.0 mg/kg p.o. for rofecoxib and 6.6 mg/kg p.o. for celecoxib. However, in contrast to celecoxib (5 mg/kg p.o. b.i.d.) and rofecoxib (5 mg/kg p.o. b.i.d.), which were without significant effect, GW406381X (5 mg/kg p.o. b.i.d.) fully reversed mechanical allodynia in the chronic constriction injury model and reversed thermal hyperalgesia in the mouse partial ligation model, both models of neuropathic pain. GW406381X, was also effective in a rat model of capsaicin-induced central sensitization, when given intrathecally (ED(50) = 0.07 mug) and after chronic but not acute oral dosing. Celecoxib and rofecoxib had no effect in this model. Several hypotheses have been proposed to try to explain these differences in efficacy, including central nervous system penetration, enzyme kinetics, and potency. The novel finding of effectiveness of GW406381X in these models of neuropathic pain/central sensitization, in addition to activity in inflammatory pain models and together with its central efficacy, suggests dual activity of GW406381X compared with celecoxib and rofecoxib, which may translate into greater efficacy in a broader spectrum of pain states in the clinic. Topics: Animals; Brain; Capsaicin; COS Cells; Cyclooxygenase Inhibitors; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Hydrocarbons, Aromatic; Hyperalgesia; Male; Mice; Nitrogen; Pain; Pyrazoles; Pyridazines; Rats | 2005 |