gw0742 and Pancreatic-Neoplasms

gw0742 has been researched along with Pancreatic-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for gw0742 and Pancreatic-Neoplasms

ArticleYear
Effect of PPARδ agonist on stearoyl-CoA desaturase 1 in human pancreatic cancer cells: role of MEK/ERK1/2 pathway.
    Canadian journal of diabetes, 2015, Volume: 39, Issue:2

    The stearoyl-CoA desaturase 1 (SCD1), also known as Δ9-desaturase, is a regulatory enzyme in the cellular lipid modification process that has been linked to pancreatic cancer and diabetes. The aim of the present study was to investigate the effect of peroxisome proliferative-activated receptor δ (PPARδ) agonist and ERK1/2- and EGF receptor (EGFR)-dependent pathways on the expression of SCD1 in human pancreatic carcinoma cell line PANC-1.. PANC-1 cells cultured in RPMI-1640 were exposed to the commonly used MEK inhibitor PD98059, EGFR-selective inhibitor AG1478, and PPARδ agonist GW0742. Changes in mRNA, protein expression and activity index of SCD1 were then determined using real-time reverse transcription polymerase chain reaction, Western blot and gas liquid chromatography, respectively.. The activity index and expression of SCD1 (p<0.01) decreased following treatment with PPARδ agonist at both mRNA and protein levels, whereas significant increases were observed after treatment with MEK or EGFR inhibitor. It was also found that the activity index of SCD1 were lower (p<0.01) in the combined treatment compared to the incubation with either inhibitor alone.. PPARδ and MEK/ERK1/2- and EGFR-dependent pathways affect the expression and activity of SCD1 in pancreatic cancer cells. Furthermore, the aforementioned kinase signalling pathways were involved in an inhibitory effect on the expression and activity of SCD1 in these cells, possibly via PPARδ activation.

    Topics: Cell Line, Tumor; Flavonoids; Humans; MAP Kinase Signaling System; Pancreatic Neoplasms; PPAR delta; Stearoyl-CoA Desaturase; Thiazoles

2015
Transcriptional regulation of Δ6-desaturase by peroxisome proliferative-activated receptor δ agonist in human pancreatic cancer cells: role of MEK/ERK1/2 pathway.
    TheScientificWorldJournal, 2013, Volume: 2013

    The Δ6-desaturase (Δ6D), also known as fatty acid desaturase 2, is a regulatory enzyme in de novo fatty acid synthesis, which has been linked to obesity and diabetes. The aim of the present study was to investigate the effect of peroxisome proliferative-activated receptor δ (PPAR δ ) agonist and MEK/ERK1/2-dependent pathway on the expression of Δ6D in human pancreatic carcinoma cell line PANC-1. PANC-1 cells cultured in RPMI-1640 were exposed to the commonly used ERK1/2 pathway inhibitor PD98059 and PPAR δ agonist GW0742. Changes in mRNA and protein expression of Δ6D were then determined using real-time RT-PCR and Western blot, respectively. The expression of Δ6D (P < 0.01) increased following treatment with PPAR δ agonist both at mRNA and protein levels, whereas no significant change was observed after treatment with MEK/ERK1/2 pathway inhibitor. It was also found that the increase in the expression of Δ6D in response to GW0742 was significantly inhibited by PD98059 (>40%, P < 0.05) or EGF receptor-selective inhibitor AG1478 (>25%, P < 0.05) pretreatment. PPAR δ and MEK/ERK1/2 signaling pathways affect differentially the expression of Δ6D in pancreatic cancer cells. Furthermore, there may be an inhibitory crosstalk between these two regulatory pathways on the mRNA expression of Δ6D and subsequently on Δ6D protein expression.

    Topics: Cell Line, Tumor; ErbB Receptors; Fatty Acid Desaturases; Flavonoids; Gene Expression Regulation, Enzymologic; Humans; MAP Kinase Signaling System; Pancreatic Neoplasms; PPAR delta; Protein Kinase Inhibitors; Quinazolines; RNA, Messenger; RNA, Neoplasm; Thiazoles; Tyrphostins

2013