gw0742 has been researched along with Lupus-Erythematosus--Systemic* in 2 studies
2 other study(ies) available for gw0742 and Lupus-Erythematosus--Systemic
Article | Year |
---|---|
Role of endoplasmic reticulum stress in the protective effects of PPARβ/δ activation on endothelial dysfunction induced by plasma from patients with lupus.
We tested whether GW0742, a peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) agonist, improves endothelial dysfunction induced by plasma from patients with systemic lupus erythematosus (SLE) involving the inhibition of endoplasmic reticulum (ER) stress.. A total of 12 non-pregnant women with lupus and 5 non-pregnant healthy women (controls) participated in the study. Cytokines and double-stranded DNA autoantibodies (anti-dsDNA) were tested in plasma samples. Endothelial cells, isolated from human umbilical cord veins (HUVECs), were used to measure nitric oxide (NO), intracellular reactive oxygen species (ROS) production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and ER stress markers.. Interferon-γ, interleukin-6, and interleukin-12 levels were significantly increased in plasma from patients with SLE with active nephritis (AN), as compared to both patients with SLE with inactive nephritis (IN) and the control group. The NO production stimulated by both the calcium ionophore A23187 and insulin was significantly reduced in HUVECs incubated with plasma from patients with AN-SLE as compared with the control group. Plasma from patients with IN-SLE did not modify A23187-stimulated NO production. Increased ROS production and NADPH oxidase activity were found in HUVECs incubated with plasma from patients with AN-SLE, which were suppressed by the ER stress inhibitor 4-PBA and the NADPH oxidase inhibitors, apocynin and VAS2870. GW0742 incubation restored the impaired NO production, the increased ROS levels, and the increased ER stress markers induced by plasma from patients with AN-SLE. These protective effects were abolished by the PPARβ/δ antagonist GSK0660 and by silencing PPARβ/δ.. PPARβ/δ activation may be an important target to control endothelial dysfunction in patients with SLE. Topics: Cells, Cultured; Endoplasmic Reticulum Stress; Endothelial Cells; Humans; Lupus Erythematosus, Systemic; Lupus Nephritis; Male; PPAR delta; PPAR-beta; Thiazoles | 2017 |
Activation of Peroxisome Proliferator Activator Receptor β/δ Improves Endothelial Dysfunction and Protects Kidney in Murine Lupus.
Women with systemic lupus erythematosus exhibit a high prevalence of hypertension, endothelial dysfunction, and renal injury. We tested whether GW0742, a peroxisome proliferator activator receptor β/δ (PPARβ/δ) agonist, ameliorates disease activity and cardiovascular complications in a female mouse model of lupus. Thirty-week-old NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with GW0742 or with the PPARβ/δ antagonist GSK0660 plus GW0742 for 5 weeks. Blood pressure, plasma double-stranded DNA autoantibodies and cytokines, nephritis, hepatic opsonins, spleen lymphocyte populations, endothelial function, and vascular oxidative stress were compared in treated and untreated mice. GW0742 treatment reduced lupus disease activity, blood pressure, cardiac and renal hypertrophy, splenomegaly, albuminuria, and renal injury in lupus mice, but not in control. GW0742 increased hepatic opsonins mRNA levels in lupus mice and reduced the elevated T, B, Treg, and Th1 cells in spleens from lupus mice. GW0742 lowered the higher plasma concentration of proinflammatory cytokines observed in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and increased nicotinamide adenine dinucleotide phosphate oxidase-driven vascular reactive oxygen species production, which were normalized by GW0742 treatment. All these effects of GW0742 were inhibited by PPARβ/δ blockade with GSK0660. Pharmacological activation of PPARβ/δ reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, which was associated with reduced plasma antidouble-stranded DNA autoantibodies and anti-inflammatory and antioxidant effects in target tissues. Our findings identify PPARβ/δ as a promising target for an alternative approach in the treatment of systemic lupus erythematosus and its associated vascular damage. Topics: Animals; Blood Pressure; Disease Models, Animal; Endothelium, Vascular; Enzyme Activation; Female; Hypertension; Lupus Erythematosus, Systemic; Mice; Mice, Inbred NZB; PPAR delta; Thiazoles | 2017 |