gw0742 has been researched along with Inflammation* in 19 studies
1 review(s) available for gw0742 and Inflammation
Article | Year |
---|---|
Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation.
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, which is composed of three members encoded by distinct genes: PPARα, PPARβ/δ, and PPARγ. The biological actions of PPARα and PPARγ and their potential as a cardiovascular therapeutic target have been extensively reviewed, whereas the biological actions of PPARβ/δ and its effectiveness as a therapeutic target in the treatment of hypertension remain less investigated. Preclinical studies suggest that pharmacological PPARβ/δ activation induces antihypertensive effects in direct [spontaneously hypertensive rat (SHR), ANG II, and DOCA-salt] and indirect (dyslipemic and gestational) models of hypertension, associated with end-organ damage protection. This review summarizes mechanistic insights into the antihypertensive effects of PPARβ/δ activators, including molecular and functional mechanisms. Pharmacological PPARβ/δ activation induces genomic actions including the increase of regulators of G protein-coupled signaling (RGS), acute nongenomic vasodilator effects, as well as the ability to improve the endothelial dysfunction, reduce vascular inflammation, vasoconstrictor responses, and sympathetic outflow from central nervous system. Evidence from clinical trials is also examined. These preclinical and clinical outcomes of PPARβ/δ ligands may provide a basis for the development of therapies in combating hypertension. Topics: Animals; Antihypertensive Agents; Blood Pressure; Endothelium, Vascular; Fatty Acids; Gene Expression Regulation; Humans; Hypertension; Inflammation; Phenoxyacetates; PPAR delta; PPAR-beta; Rats; Rats, Inbred SHR; RGS Proteins; Sympathetic Nervous System; Thiazoles; Vasoconstriction; Vasodilation | 2017 |
18 other study(ies) available for gw0742 and Inflammation
Article | Year |
---|---|
Gene Doping with Peroxisome-Proliferator-Activated Receptor Beta/Delta Agonists Alters Immunity but Exercise Training Mitigates the Detection of Effects in Blood Samples.
Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARβ/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARβ/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARβ/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARβ/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs). Furthermore, we conducted studies in mice assigned to groups according to an 8-week exercise training program and/or a 6-week treatment with 3 mg/kg/day of GW0742, a PPARβ/δ agonist, in order to (1) determine the immune impact of the treatment on secondary lymphoid organs and to (2) validate a blood signature. Our results show that PPARβ/δ activation increases FAO potential in human and mouse T cells and mouse secondary lymphoid organs. This was accompanied by increased Treg polarization of human primary T cells. Moreover, Treg prevalence in mouse lymph nodes was increased when PPARβ/δ activation was combined with exercise training. Lastly, PPARβ/δ activation increased FAO potential in mouse blood T cells. Unfortunately, this signature was masked by training in mice. In conclusion, beyond the fact that it is unlikely that this signature could be used as a doping-control strategy, our results suggest that the use of PPARβ/δ agonists could have potential detrimental immune effects that may not be detectable in blood samples. Topics: Animals; Cells, Cultured; Exercise; Fatty Acids; Humans; Inflammation; Mice; Mice, Inbred C57BL; Oxidation-Reduction; Performance-Enhancing Substances; PPAR delta; PPAR-beta; Substance Abuse Detection; T-Lymphocytes, Regulatory; Thiazoles | 2021 |
Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model.
Brain injury has been proposed as the major cause of the poor outcomes associated with intracerebral hemorrhage (ICH). Emerging evidence indicates that the nuclear receptor, peroxisome proliferator-activated receptor β/δ (PPAR-β/δ), plays a crucial role in the pathological process of central nervous impairment. The present study was undertaken to evaluate the protective effects of PPAR-β/δ activation using a selective PPAR-β/δ agonist, GW0742, against brain injury after ICH in a mouse model. ICH was induced by intravenous injection of collagenase into the right caudate putamen. To examine the protective effect of PPAR-β/δ activation against ICH-induced brain injury, mice were either intraperitoneally injected with GW0742 (3 mg/kg, body weight) or saline (control group) 30 min before inducing ICH. Behavioral dysfunction was evaluated 24 and 72 h after injury. Then, all mice were killed to assess hematoma volume, brain water content, and blood-brain barrier (BBB) permeability. TUNEL and Nissl staining were performed to quantify the brain injury. The expression of PPAR-β/δ, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, Bcl-2-related X-protein (Bax), and B-cell lymphoma 2 (Bcl-2) in the perihematomal area was examined by immunohistochemistry and western blotting analysis. Mice treated with GW0742 showed significantly less severe behavioral deficits compared to the control group, accompanied by increased expression of PPAR-β/δ and Bcl-2, and increased expression of IL-1β, TNF-α, and Bax decreased simultaneously in the GW0742-treated group. Furthermore, the GW0742-pretreated group showed significantly less brain edema and BBB leakage. Neuronal loss was attenuated, and the number of apoptotic neuronal cells in perihematomal tissues reduced, in the GW0742-pretreated group compared to the control group. However, the hematoma volume did not decrease significantly on day 3 after ICH. These results suggest that the activation of PPAR-β/δ exerts a neuroprotective effect on ICH-induced brain injury, possibly through anti-inflammatory and anti-apoptotic pathways. Topics: Animals; Apoptosis; Brain Injuries; Cerebral Hemorrhage; Collagenases; Gliosis; Inflammation; Male; Mice, Inbred C57BL; Neuroprotective Agents; PPAR delta; PPAR-beta; Thiazoles; Up-Regulation | 2020 |
GW0742 activates miR-17-5p and inhibits TXNIP/NLRP3-mediated inflammation after hypoxic-ischaemic injury in rats and in PC12 cells.
This study aimed to investigate the effects of PPAR-β/δ receptor agonist GW0742 on neuroinflammation in a rat model of hypoxia-ischaemia (HI) and in PC12 cells in OGD model. HI was induced by ligating the common carotid artery and inducing hypoxia for 150 minutes. Immunofluorescence was used for quantification of microglia activation and for determining cellular localization of PPAR-β/δ. Expression of proteins was measured by Western blot. Activation of miR-17-5p by GW0742 was assessed in PC12 cells by Dual-Luciferase Reporter Gene Assay. The endogenous expression of TXNIP, NLRP3, cleaved caspase-1 and IL-1β was increased after HI. GW0742 treatment significantly reduced the number of activated pro-inflammatory microglia in ipsilateral hemisphere after HI. Mechanistically, GW0742 significantly decreased the expression of TXNIP, NLRP3, IL-6 and TNF-α. Either PPAR-β/δ antagonist GSK3787, miR-17-5p inhibitor, or TXNIP CRISPR activation abolished the anti-inflammatory effects of GW0742. Activation of PPAR-β/δ by GW0742 activated miR-17-5p expression in PC12 cells and increased cell viability after OGD, which was accompanied by decreased expression of TXNIP and reduced secretion of IL-1β and TNF-α. In conclusion, GW0742 may be a promising neurotherapeutic for the management of HI patients. Topics: Animals; Blood Glucose; Cell Cycle Proteins; Cell Survival; Female; Glucose; Hypoxia; Inflammasomes; Inflammation; Ischemia; Male; MicroRNAs; Microscopy, Fluorescence; NLR Family, Pyrin Domain-Containing 3 Protein; Oxygen; PC12 Cells; Rats; Rats, Sprague-Dawley; Thiazoles | 2020 |
GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice.
Endoplasmic reticulum (ER) stress and hepatic steatosis are intertwined with insulin resistance. PPARs are at the crossroads of these pathways. This study aimed to investigate the effects of GW0742 (PPAR-beta agonist) on hepatic energy metabolism and ER stress in a murine diet-induced obesity model. HF diet caused overweight, hyperinsulinemia, hepatic inflammation (increased NF-kB, TNF-alpha, and IL-6 protein expression) and favored hepatic lipogenesis, leading to ER stress, with ultrastructural and molecular alterations, ending up in proapoptotic stimulus. GW0742 rescued the overweight and the glucose tolerance, tackled hepatic inflammation and favored hepatic beta-oxidation over lipogenesis. These results comply with ER ultrastructure improvement, reducing ER stress and apoptosis in treated animals. Our results indicate that the PPAR-beta/delta activation alleviated the ER stress by improving the insulin sensitivity and maximizing the hepatic energy metabolism with a shift towards beta-oxidation. PPAR-beta/delta activation could be an essential tool to avoid the NAFLD progression and other obesity constraints. Topics: Alanine Transaminase; Animals; Apoptosis; Body Weight; Cholesterol; Diet, High-Fat; Endoplasmic Reticulum Stress; Energy Intake; Energy Metabolism; Fatty Liver; Feeding Behavior; Glucose Tolerance Test; Hepatocytes; Inflammation; Insulin Resistance; Lipogenesis; Liver; Male; Mice, Inbred C57BL; Oxidation-Reduction; PPAR-beta; Protein Isoforms; Thiazoles | 2018 |
Delayed activation of PPAR-β/δ improves long-term survival in mouse sepsis: effects on organ inflammation and coagulation.
Activation of peroxisome proliferator-activated receptor (PPAR)-β/δ reduces tissue injury in murine endotoxemia. We hypothesized that the PPAR-β/δ-agonist GW0742 improves long-term outcome after sepsis caused by cecal ligation and puncture (CLP). Fifty-one CD-1 female mice underwent CLP and received either vehicle (control), GW0742 (0.03 mg/kg/injection; five post-CLP i.v. injections), GSK0660 (PPAR-β/δ-antagonist) or both and were monitored for 28 d. Another 20 CLP mice treated with GW0742 and vehicle were sacrificed 24 h post-CLP to assess coagulopathy. Compared to vehicle, survival of CLP-mice treated with GW0742 was higher by 35% at d 7 and by 50% at d 28. CLP mice treated with GW0742 had 60% higher IFN-γ but circulating monocyte chemoattractant protein-1 and chemokine ligand were lower at 48 h post-CLP. Compared to vehicle, CLP mice treated with GW0742 exhibited a 50% reduction in the circulating plasminogen activator inhibitor-1 associated with an increase in platelet number at 24 h post-CLP (but no changes occurred in anti-thrombin-III, plasminogen, fibrinogen and clotting-times). CLP mice treated with GW0742 exhibited a similar increase in most of the biochemical markers of organ injury/dysfunction (lactate dehydrogenase, alanine aminotransferase, creatine kinase, creatinine, blood urea nitrogen, and triglycerides) measured. Treatment with GW0742 consistently improved long-term survival in septic CD-1 mice by partially modulating the post-CLP systemic cytokine response and coagulation systems. Topics: Animals; Blood Coagulation; Cytokines; Female; Inflammation; Mice; PPAR delta; PPAR-beta; Sepsis; Sulfones; Thiazoles; Thiophenes | 2018 |
Role of UCP2 in the protective effects of PPARβ/δ activation on lipopolysaccharide-induced endothelial dysfunction.
Bacterial endotoxin lipopolysaccharide (LPS) activates inflammatory pathways, induces cytokine expression in the endothelium, augments reactive oxygen species (ROS) production in the vascular wall, and induces endothelial dysfunction. The aim of the present study was to analyze the effects of peroxisome proliferator-activated receptor (PPAR)β/δ activation on LPS-induced inflammation, oxidative stress and endothelial dysfunction and to determine whether uncoupling protein-2 (UCP2) plays a role in these effects. In vivo, the PPARβ/δ agonist GW0742 treatment prevented the LPS-induced reduction in aortic relaxation, the increase in vascular ROS production, the upregulation of NOX1, NOX2, p47(phox), and p22(phox) mRNA levels, and the endoplasmic reticulum (ER) stress markers in mice. We show that in mouse aortic endothelial cells (MAECs), GW0742 prevented the decreased A23187-stimulated nitric oxide (NO) production, and the increased intracellular ROS levels caused by exposure to LPS in vitro. The PPARβ/δ antagonist GSK0660 abolished all these in vivo and in vitro protective effects induced by GW0742. This agonist also restored the reduced expression of UCP2 and mitofusin-2 induced by LPS. The effects of GW0742 on NO and ROS production in MAEC exposed to LPS were abolished by the UCP2 inhibitor genipin or by siRNA targeting UCP-2. Genipin also suppressed the expressional changes on NADPH oxidase and ER stress markers induced by GW0742. In conclusion, PPARβ/δ activation restored the LPS-induced endothelial dysfunction by upregulation of UCP2, with the subsequent alleviation of ER stress and NADPH oxidase activity, thus reducing intracellular ROS production and increasing NO bioavailability. Topics: Animals; Aorta; Calcimycin; Cytochrome b Group; Endoplasmic Reticulum Stress; Endothelial Cells; Endothelium, Vascular; Gene Expression Regulation; Inflammation; Lipopolysaccharides; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; NADH, NADPH Oxidoreductases; NADPH Oxidase 1; NADPH Oxidase 2; NADPH Oxidases; Nitric Oxide; PPAR gamma; PPAR-beta; Primary Cell Culture; Reactive Oxygen Species; RNA, Small Interfering; Signal Transduction; Sulfones; Thiazoles; Thiophenes; Tissue Culture Techniques; Uncoupling Protein 2 | 2016 |
Activation of the nuclear receptor PPARδ is neuroprotective in a transgenic mouse model of Alzheimer's disease through inhibition of inflammation.
Alzheimer's disease (AD) is a multifactorial disorder associated with the accumulation of soluble forms of beta-amyloid (Aβ) and its subsequent deposition into plaques. One of the major contributors to neuronal death is chronic and uncontrolled inflammatory activation of microglial cells around the plaques and their secretion of neurotoxic molecules. A shift in microglial activation towards a phagocytic phenotype has been proposed to confer benefit in models of AD. Peroxisome proliferator activator receptor δ (PPARδ) is a transcription factor with potent anti-inflammatory activation properties and PPARδ agonism leads to reduction in brain Aβ levels in 5XFAD mice. This study was carried out to elucidate the involvement of microglial activation in the PPARδ-mediated reduction of Aβ burden and subsequent outcome to neuronal survival in a 5XFAD mouse model of AD.. 5XFAD mice were orally treated with the PPARδ agonist GW0742 for 2 weeks. The brain Aβ load, glial activation, and neuronal survival were assessed by immunohistochemistry and quantitative PCR. In addition, the ability of GW0742 to prevent direct neuronal death as well as inflammation-induced neuron death was analyzed in vitro.. Our results show for the first time that a short treatment period of 5XFAD mice was effective in reducing the parenchymal Aβ load without affecting the levels of intraneuronal Aβ. This was concomitant with a decrease in overall microglial activation and reduction in proinflammatory mediators. Instead, microglial immunoreactivity around Aβ deposits was increased. Importantly, the reduction in the proinflammatory milieu elicited by GW0742 treatment resulted in attenuation of neuronal loss in vivo in the subiculum of 5XFAD mice. In addition, whereas GW0742 failed to protect primary neurons against glutamate-induced cell death, it prevented inflammation-induced neuronal death in microglia-neuron co-cultures in vitro.. This study demonstrates that GW0742 treatment has a prominent anti-inflammatory effect in 5XFAD mice and suggests that PPARδ agonists may have therapeutic utility in treating AD. Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Animals, Newborn; Anti-Inflammatory Agents; Calcium-Binding Proteins; Cell Adhesion Molecules; Cells, Cultured; Complement C1q; Complement C3; Disease Models, Animal; Embryo, Mammalian; Female; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Humans; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microfilament Proteins; Phosphopyruvate Hydratase; PPAR delta; Thiazoles | 2015 |
The PPARδ agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation.
Brain tumor patients often develop cognitive impairment months to years after partial or fractionated whole-brain irradiation (WBI). Studies suggest that neuroinflammation and decreased hippocampal neurogenesis contribute to the pathogenesis of radiation-induced brain injury. In this study, we determined if the peroxisomal proliferator-activated receptor (PPAR) δ agonist GW0742 can prevent radiation-induced brain injury in C57Bl/6 wild-type (WT) and PPARδ knockout (KO) mice. Dietary GW0742 prevented the acute increase in IL-1β mRNA and ERK phosphorylation measured at 3h after a single 10-Gy dose of WBI; it also prevented the increase in the number of activated hippocampal microglia 1 week after WBI. In contrast, dietary GW074 failed to prevent the radiation-induced decrease in hippocampal neurogenesis determined 2 months after WBI in WT mice or to mitigate their hippocampal-dependent spatial memory impairment measured 3 months after WBI using the Barnes maze task. PPARδ KO mice exhibited defects including decreased numbers of astrocytes in the dentate gyrus/hilus of the hippocampus and a failure to exhibit a radiation-induced increase in activated hippocampal microglia. Interestingly, the number of astrocytes in the dentate gyrus/hilus was reduced in WT mice, but not in PPARδ KO mice 2 months after WBI. These results demonstrate that, although dietary GW0742 prevents the increase in inflammatory markers and hippocampal microglial activation in WT mice after WBI, it does not restore hippocampal neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after WBI. Thus, the exact relationship between radiation-induced neuroinflammation, neurogenesis, and cognitive impairment remains elusive. Topics: Animals; Cognition Disorders; Cranial Irradiation; Extracellular Signal-Regulated MAP Kinases; Hippocampus; Inflammation; Interleukin-1beta; Mice; Mice, Inbred C57BL; Microglia; Neurogenesis; Phosphorylation; PPAR delta; Thiazoles | 2013 |
High sugar intake and development of skeletal muscle insulin resistance and inflammation in mice: a protective role for PPAR- δ agonism.
Peroxisome Proliferator Activated Receptor (PPAR)- δ agonists may serve for treating metabolic diseases. However, the effects of PPAR- δ agonism within the skeletal muscle, which plays a key role in whole-body glucose metabolism, remain unclear. This study aimed to investigate the signaling pathways activated in the gastrocnemius muscle by chronic administration of the selective PPAR- δ agonist, GW0742 (1 mg/kg/day for 16 weeks), in male C57Bl6/J mice treated for 30 weeks with high-fructose corn syrup (HFCS), the major sweetener in foods and soft-drinks (15% wt/vol in drinking water). Mice fed with the HFCS diet exhibited hyperlipidemia, hyperinsulinemia, hyperleptinemia, and hypoadiponectinemia. In the gastrocnemius muscle, HFCS impaired insulin and AMP-activated protein kinase signaling pathways and reduced GLUT-4 and GLUT-5 expression and membrane translocation. GW0742 administration induced PPAR- δ upregulation and improvement in glucose and lipid metabolism. Diet-induced activation of nuclear factor-κB and expression of inducible-nitric-oxide-synthase and intercellular-adhesion-molecule-1 were attenuated by drug treatment. These effects were accompanied by reduction in the serum concentration of interleukin-6 and increase in muscular expression of fibroblast growth factor-21. Overall, here we show that PPAR- δ activation protects the skeletal muscle against the metabolic abnormalities caused by chronic HFCS exposure by affecting multiple levels of the insulin and inflammatory cascades. Topics: Animals; Carbohydrates; Fibroblast Growth Factors; Gene Expression Regulation; Glucose; Glucose Tolerance Test; Immunohistochemistry; Inflammation; Insulin; Insulin Resistance; Interleukin-6; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; Nutritive Sweeteners; PPAR delta; Signal Transduction; Thiazoles | 2013 |
Generation and characterization of a humanized PPARδ mouse model.
Humanized mice for the nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ), termed PPARδ knock-in (PPARδ KI) mice, were generated for the investigation of functional differences between mouse and human PPARδ and as tools for early drug efficacy assessment.. Human PPARδ function in lipid metabolism was assessed at baseline, after fasting or when challenged with the GW0742 compound in mice fed a chow diet or high-fat diet (HFD).. Analysis of PPARδ mRNA levels revealed a hypomorph expression of human PPARδ in liver, macrophages, small intestine and heart, but not in soleus and quadriceps muscles, white adipose tissue and skin. PPARδ KI mice displayed a small decrease of high-density lipoprotein-cholesterol whereas other lipid parameters were unaltered. Plasma metabolic parameters were similar in wild-type and PPARδ KI mice when fed chow or HFD, and following physiological (fasting) and pharmacological (GW0742 compound) activation of PPARδ. Gene expression profiling in liver, soleus muscle and macrophages showed similar gene patterns regulated by mouse and human PPARδ. The anti-inflammatory potential of human PPARδ was also similar to mouse PPARδ in liver and isolated macrophages.. These data indicate that human PPARδ can compensate for mouse PPARδ in the regulation of lipid metabolism and inflammation. Overall, this novel PPARδ KI mouse model shows full responsiveness to pharmacological challenge and represents a useful tool for the preclinical assessment of PPARδ activators with species-specific activity. Topics: Animals; Diet, High-Fat; DNA, Complementary; Fasting; Female; Gene Expression Profiling; Humans; Inflammation; Lipid Metabolism; Lipoproteins, HDL; Liver; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Muscle, Skeletal; PPAR delta; RNA, Messenger; Thiazoles | 2011 |
GW0742, a selective PPAR-beta/delta agonist, contributes to the resolution of inflammation after gut ischemia/reperfusion injury.
PPARs belong to a subfamily of transcription nuclear factors. Three isoforms of PPARs have been identified: alpha, beta/delta, and gamma, encoded by different genes and distributed in various tissues. They play important roles in metabolic processes, such as regulation of glucose and lipid redistribution. They also have antiatherogenic, anti-inflammatory, as well as antihypertensive functions. There is good evidence that ligands of PPARs reduce tissue injury associated with I/R. This study investigated the effects of GW0742, a potent and selective PPAR-beta/delta agonist, on tissue injury, caused in a mouse model of SAO shock. IRI of the intestine was caused by clamping the superior mesenteric artery and the celiac trunk for 45 min, followed by release of the clamp, allowing reperfusion for 1 or 6 h. Only 10% of the SAO animals survived the entire 6-h reperfusion period. In a separate set of experiments after 60 min of reperfusion, animals were killed for histological examination and biochemical studies. Administration of GW0742 (0.1 mg/kg, i.p.), 5 min prior to reperfusion, significantly reduced the (1) mortality rate, (2) histological evidence of gut injury, (3) MPO activity, (4) proinflammatory cytokines (TNF-alpha, IL-1beta), (5) adhesion molecules (ICAM-1, P-selectin), (6) nitrotyrosine formation, (7) NF-kappaB expression, (8) PAR formation, and (9) apoptosis (Bax, Bcl-2, Fas-L, and TUNEL). Based on these findings, we propose that GW0742 would be useful in the treatment of various I/R diseases. Topics: Animals; Apoptosis; Cytokines; Down-Regulation; Inflammation; Intestinal Diseases; Mice; PPAR delta; PPAR-beta; Reperfusion Injury; Survival Rate; Thiazoles | 2010 |
Peroxisome proliferator-activated receptor {delta} regulates inflammation via NF-{kappa}B signaling in polymicrobial sepsis.
The nuclear peroxisome proliferator-activated receptor δ (PPARδ) is an important regulator of lipid metabolism. In contrast to its known effects on energy homeostasis, its biological role on inflammation is not well understood. We investigated the role of PPARδ in the modulation of the nuclear factor-κB (NF-κB)-driven inflammatory response to polymicrobial sepsis in vivo and in macrophages in vitro. We demonstrated that administration of GW0742, a specific PPARδ ligand, provided beneficial effects to rats subjected to cecal ligation and puncture, as shown by reduced systemic release of pro-inflammatory cytokines and neutrophil infiltration in lung, liver, and cecum, when compared with vehicle treatment. Molecular analysis revealed that treatment with GW0742 reduced NF-κB binding to DNA in lung and liver. In parallel experiments, heterozygous PPARδ-deficient mice suffered exaggerated lethality when subjected to cecal ligation and puncture and exhibited severe lung injury and higher levels of circulating tumor necrosis factor-α (TNFα) and keratinocyte-derived chemokine than wild-type mice. Furthermore, in lipopolysaccharide-stimulated J774.A1 macrophages, GW0742 reduced TNFα production by inhibiting NF-κB activation. RNA silencing of PPARδ abrogated the inhibitory effects of GW0742 on TNFα production. Chromatin immunoprecipitation assays revealed that PPARδ displaced the NF-κB p65 subunit from the κB elements of the TNFα promoter, while recruiting the co-repressor BCL6. These data suggest that PPARδ is a crucial anti-inflammatory regulator, providing a basis for novel sepsis therapies. Topics: Animals; Bacteremia; Blotting, Western; Cecum; Cell Nucleus; Cells, Cultured; Chromatin Immunoprecipitation; Disease Models, Animal; Electrophoretic Mobility Shift Assay; Enzyme-Linked Immunosorbent Assay; Hypotension; Immunoenzyme Techniques; Inflammation; Luciferases; Macrophages, Peritoneal; Male; Mice; Mice, Knockout; NF-kappa B; PPAR delta; Rats; Rats, Sprague-Dawley; Sepsis; Signal Transduction; Survival Rate; Thiazoles | 2010 |
Chemoprevention of chemically induced skin tumorigenesis by ligand activation of peroxisome proliferator-activated receptor-beta/delta and inhibition of cyclooxygenase 2.
Ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) and inhibition of cyclooxygenase-2 (COX2) activity by nonsteroidal anti-inflammatory drugs (NSAID) can both attenuate skin tumorigenesis. The present study examined the hypothesis that combining ligand activation of PPARβ/δ with inhibition of COX2 activity will increase the efficacy of chemoprevention of chemically induced skin tumorigenesis over that observed with either approach alone. To test this hypothesis, wild-type and Pparβ/δ-null mice were initiated with 7,12-dimethylbenz[a]anthracene (DMBA), topically treated with 12-O-tetradecanoylphorbol-13-acetate to promote tumorigenesis, and then immediately treated with topical application of the PPARβ/δ ligand GW0742, dietary administration of the COX2 inhibitor nimesulide, or both GW0742 and nimesulide. Ligand activation of PPARβ/δ with GW0742 caused a PPARβ/δ-dependent delay in the onset of tumor formation. Nimesulide also delayed the onset of tumor formation and caused inhibition of tumor multiplicity (46%) in wild-type mice but not in Pparβ/δ-null mice. Combining ligand activation of PPARβ/δ with dietary nimesulide resulted in a further decrease of tumor multiplicity (58%) in wild-type mice but not in Pparβ/δ-null mice. Biochemical and molecular analysis of skin and tumor samples show that these effects were due to the modulation of terminal differentiation, attenuation of inflammatory signaling, and induction of apoptosis through both PPARβ/δ-dependent and PPARβ/δ-independent mechanisms. Increased levels and activity of PPARβ/δ by nimesulide were also observed. These studies support the hypothesis that combining ligand activation of PPARβ/δ with inhibition of COX2 activity increases the efficacy of preventing chemically induced skin tumorigenesis as compared with either approach alone. Topics: Animals; Apoptosis; Biomarkers, Tumor; Cell Differentiation; Chemoprevention; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Gene Expression Regulation, Neoplastic; Inflammation; Ligands; Mice; PPAR delta; PPAR-beta; Skin Neoplasms; Sulfonamides; Thiazoles | 2010 |
Modulation of LPS-induced pulmonary neutrophil infiltration and cytokine production by the selective PPARbeta/delta ligand GW0742.
To define the anti-inflammatory effects of PPARbeta/delta activation by use of the selective PPARbeta/delta ligand (GW0742) in a model of lipopolysaccharide (LPS)-induced pulmonary inflammation.. Male BALB/c mice were pretreated for three days with the PPARbeta/delta agonist, GW0742, prior to induction of LPS-mediated pulmonary inflammation. Bronchial alveolar lavage fluid (BALF) was analyzed for inflammatory cell influx and for levels of pro-inflammatory mediators. BALF-derived inflammatory cells were also collected for mRNA analysis.. Pretreatment with GW0742 resulted in a significant decrease in leukocyte recruitment into the pulmonary space. Protein and mRNA levels of the pro-inflammatory cytokines IL-6, IL-1beta and TNFalpha in BALF were found to be significantly decreased in GW0742-treated animals (30 mg/kg). A significant decrease in granulocyte macrophage-colony stimulating factor (GM-CSF), a major regulator of neutrophil chemotaxis (via its downstream actions on TNFalpha and other cytokines/chemokines), activation and survival, was also noted in the BALF levels of GW0742-treated animals.. The present study demonstrates that activation of PPARbeta/delta attenuates the degree of inflammation in a model of LPS-induced pulmonary inflammation and may therefore represent a novel therapeutic approach for the treatment of inflammation-mediated pathologies. Topics: Animals; Cytokines; Granulocyte-Macrophage Colony-Stimulating Factor; Inflammation; Leukocytes; Ligands; Lipopolysaccharides; Male; Mice; Mice, Inbred BALB C; Models, Biological; Neutrophils; PPAR delta; PPAR-beta; Thiazoles | 2008 |
Suppression of pro-inflammatory adhesion molecules by PPAR-delta in human vascular endothelial cells.
Endothelial activation is implicated in atherogenesis and diabetes. The role of peroxisome proliferator-activated receptor-delta (PPAR-delta) in endothelial activation remains poorly understood. In this study, we investigated the anti-inflammatory effect of PPAR-delta and the mechanism involved.. In human umbilical vein endothelial cells (HUVECs), the synthetic PPAR-delta ligands GW0742 and GW501516 significantly inhibited tumor necrosis factor (TNF)-alpha-induced expression of vascular cell adhesion molecule-1 and E-selectin (assayed by real-time RT-PCR and Northern blotting), as well as the ensuing endothelial-leukocyte adhesion. Activation of PPAR-delta upregulated the expression of antioxidant genes superoxide dismutase 1, catalase, and thioredoxin and decreased reactive oxygen species production in ECs. Chromatin immunoprecipitation assays showed that GW0742 switched the association of BCL-6, a transcription repressor, from PPAR-delta to the vascular cell adhesion molecule (VCAM)-1 promoter. Small interfering RNA reduced endogenous PPAR-delta expression but potentiated the suppressive effect of GW0742 on EC activation, which suggests that the nonliganded PPAR-delta may have an opposite effect.. We have demonstrated that ligand activation of PPAR-delta in ECs has a potent antiinflammatory effect, probably via a binary mechanism involving the induction of antioxidative genes and the release of nuclear corepressors. PPAR-delta agonists may have a potential for treating inflammatory diseases such as atherosclerosis and diabetes. Topics: Catalase; Cells, Cultured; Endothelial Cells; Humans; Inflammation; Ligands; PPAR delta; Superoxide Dismutase; Superoxide Dismutase-1; Thiazoles; Thioredoxins; Umbilical Veins; Up-Regulation | 2008 |
PPARdelta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis.
Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor delta (PPARdelta) has been shown to improve insulin resistance, adiposity, and plasma HDL levels. However, its antiatherogenic role remains controversial. Here we report atheroprotective effects of PPARdelta activation in a model of angiotensin II (AngII)-accelerated atherosclerosis, characterized by increased vascular inflammation related to repression of an antiinflammatory corepressor, B cell lymphoma-6 (Bcl-6), and the regulators of G protein-coupled signaling (RGS) proteins RGS4 and RGS5. In this model, administration of the PPARdelta agonist GW0742 (1 or 10 mg/kg) substantially attenuated AngII-accelerated atherosclerosis without altering blood pressure and increased vascular expression of Bcl-6, RGS4, and RGS5, which was associated with suppression of inflammatory and atherogenic gene expression in the artery. In vitro studies demonstrated similar changes in AngII-treated macrophages: PPARdelta activation increased both total and free Bcl-6 levels and inhibited AngII activation of MAP kinases, p38, and ERK1/2. These studies uncover crucial proinflammatory mechanisms of AngII and highlight actions of PPARdelta activation to inhibit AngII signaling, which is atheroprotective. Topics: Adipokines; Angiotensin II; Animals; Atherosclerosis; Cell Movement; Enzyme Activation; Gene Expression Regulation; Hypercholesterolemia; Hypertriglyceridemia; Inflammation; Ligands; Macrophages; Male; Mice; Mice, Knockout; Mitogen-Activated Protein Kinases; PPAR delta; Proto-Oncogene Proteins c-bcl-6; Receptors, LDL; Signal Transduction; Thiazoles; Transcription, Genetic | 2008 |
PPARdelta modulates lipopolysaccharide-induced TNFalpha inflammation signaling in cultured cardiomyocytes.
Peroxisome proliferator activated receptors (PPARs: PPARalpha, gamma and delta) regulate fatty acid metabolism, glucose homeostasis, cell proliferation, differentiation and inflammation. Tumor necrosis factor alpha (TNFalpha) is one of the important pathological factors in inflammatory responses during the pathological progression of myocardial ischemic/reperfusion and hypertrophy. Accumulating evidence shows that synthetic ligands of PPARalpha and PPARgamma suppress myocardial inflammatory responses, such as the production of TNFalpha, thus exerting beneficial effects in animals who had undergone ischemia/reperfusion injury or cardiac hypertrophy. However, it remains obscured if PPARdelta and its ligands exert any effect on the production of TNFalpha, thus influencing cardiac inflammatory responses. In this study, we investigated the effects of PPARdelta and its synthetic ligand GW0742 on TNFalpha production in cultured cardiomyocytes. Our studies indicate that a PPARdelta-selective ligand inhibited lipopolysaccharide (LPS)-induced TNFalpha production from cardiomyocytes. Adenoviral-mediated overexpression of PPARdelta substantially inhibited TNFalpha expression in cultured cardiomyocytes compared to controls, whereas overexpression of a PPARdelta mutant with ablated ligand binding domain did not show similar effect. Conversely, absence of PPARdelta in cardiomyocytes further exaggerated LPS-induced TNFalpha production. Moreover, activation of PPARdelta abrogated LPS-induced degradation of IkappaBs, thus suppressing LPS-induced nuclear factor kappaB (NF-kappaB) activities. Therefore, PPARdelta is an important determinant of TNFalpha expression via the NF-kappaB signaling pathway, thus serving as therapeutic targets to attenuate inflammation that are involved in cardiac pathological progression. Topics: Animals; Animals, Newborn; Cells, Cultured; Culture Media; Gene Expression Regulation; Heart; I-kappa B Kinase; Inflammation; Ligands; Lipopolysaccharides; Mice; Myocytes, Cardiac; NF-kappa B; PPAR delta; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Thiazoles; Transcription, Genetic; Tumor Necrosis Factor-alpha | 2006 |
The PPARdelta agonist GW0742X reduces atherosclerosis in LDLR(-/-) mice.
Several lines of evidence suggest a biological role for peroxisome proliferator-activated receptor (PPARdelta) in the pathogenesis of atherosclerosis. Administration of synthetic PPARdelta agonists to obese rhesus monkeys elevates serum high-density lipoprotein (HDL) cholesterol as a result of increased reverse cholesterol transport whilst in vitro studies have suggested a role for PPARdelta in lipid uptake into macrophages. Recent studies have found that PPARdelta depletion from macrophages in LDL receptor (LDLR(-/-)) mice decreases lesion area via modulation of the inflammatory status of the macrophage, an effect also seen on pharmacological activation of PPARdelta in vitro. We demonstrate here that the PPARdelta agonist, GW0742X has potent anti-atherogenic activity in the LDLR(-/-) mouse, decreasing lesion area by up to 50%. Administration of GW0742X had no effect on total cholesterol, HDL or LDL cholesterol and modest effects on very low-density lipoprotein (VLDL). Treatment with GW0742X resulted in decreased expression of monocyte chemoattractant protein 1 (MCP-1) and intracellular adhesion moleculae 1 (ICAM-1) in the aortae of treated mice. In addition, GW0742X decreased tumour necrosis factor-alpha (TNFalpha) expression in peritoneal macrophages, aortae and adipose tissue in comparison with control animals. Changes in gene expression were reflected in decreased plasma levels of MCP-1. These observations support an atheroprotective effect of PPARdelta agonists in vivo. Topics: Animals; Aorta; Arteriosclerosis; Biomarkers; Body Weight; Eating; Inflammation; Lipids; Lipoproteins; Macrophages; Mice; Mice, Knockout; PPAR delta; Receptors, LDL; Thiazoles | 2005 |