gw0742 and Diabetes-Mellitus

gw0742 has been researched along with Diabetes-Mellitus* in 3 studies

Other Studies

3 other study(ies) available for gw0742 and Diabetes-Mellitus

ArticleYear
Peroxisome proliferator-activated receptor δ agonist attenuates hepatic steatosis by anti-inflammatory mechanism.
    Experimental & molecular medicine, 2012, Oct-31, Volume: 44, Issue:10

    Although peroxisome proliferator receptor (PPAR)-α and PPAR-γ agonist have been developed as chemical tools to uncover biological roles for the PPARs such as lipid and carbohydrate metabolism, PPAR-δ has not been fully investigated. In this study, we examined the effects of the PPAR-δ agonist GW0742 on fatty liver changes and inflammatory markers. We investigated the effects of PPAR-δ agonist GW0742 on fatty liver changes in OLETF rats. Intrahepatic triglyceride contents and expression of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1) and also, PPAR-γ coactivator (PGC)-1α gene were evaluated in liver tissues of OLETF rats and HepG2 cells after GW0742 treatment. The level of TNF-α and MCP-1 was also examined in supernatant of Raw264. 7 cell culture. To address the effects of GW0742 on insulin signaling, we performed in vitro study with AML12 mouse hepatocytes. Rats treated with GW0742 (10 mg/kg/day) from 26 to 36 weeks showed improvement in fatty infiltration of the liver. In liver tissues, mRNA expressions of TNF-α, MCP-1, and PGC-1α were significantly decreased in diabetic rats treated with GW0742 compared to diabetic control rats. We also observed that GW0742 had inhibitory effects on palmitic acid-induced fatty accumulation and inflammatory markers in HepG2 and Raw264.7 cells. The expression level of Akt and IRS-1 was significantly increased by treatment with GW0742. The PPAR-δ agonist may attenuate hepatic fat accumulation through anti-inflammatory mechanism, reducing hepatic PGC-1α gene expression, and improvement of insulin signaling.

    Topics: Animals; Anti-Inflammatory Agents; Blood Glucose; Cytokines; Diabetes Mellitus; Fatty Liver; Glucose Tolerance Test; Hep G2 Cells; Humans; Insulin Resistance; Liver; Male; PPAR delta; Rats; Rats, Long-Evans; Thiazoles; Triglycerides

2012
Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents.
    Journal of medicinal chemistry, 2011, Feb-10, Volume: 54, Issue:3

    Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that has been functionally implicated in the regulation of energy homeostasis. Herein is described the development of diaryl ether based thiazolidenediones, which function as selective ligands against this receptor. Series optimization provided several potent analogues that inhibit the recruitment of a coactivator peptide fragment in in vitro biochemical assays (IC(50) < 150 nM) and cellular two-hybrid reporter assays against the ligand binding domain (IC(50) = 1-5 μM). A cocrystal structure of the ligand-binding domain of ERRα with lead compound 29 revealed the presence of a covalent interaction between the protein and ligand, which has been shown to be reversible. In diet-induced murine models of obesity and in an overt diabetic rat model, oral administration of 29 normalized insulin and circulating triglyceride levels, improved insulin sensitivity, and was body weight neutral. This provides the first demonstration of functional activities of an ERRα ligand in metabolic animal models.

    Topics: Administration, Oral; Animals; Binding, Competitive; Biological Availability; Crystallography, X-Ray; Diabetes Mellitus; Dogs; ERRalpha Estrogen-Related Receptor; Ethers; Female; Humans; Hypoglycemic Agents; Insulin; Insulin Resistance; Ligands; Macaca fascicularis; Male; Mice; Mice, Knockout; Models, Molecular; Molecular Structure; Obesity; Rats; Rats, Sprague-Dawley; Receptors, Estrogen; Structure-Activity Relationship; Thiazolidinediones; Triglycerides

2011
Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice.
    Hepatology (Baltimore, Md.), 2008, Volume: 48, Issue:2

    Primary nonalcoholic fatty liver disease is one of the most common forms of chronic liver diseases and is associated with insulin-resistant states such as diabetes and obesity. Recent work has revealed potential implications of peroxisome proliferator-activated receptor-delta (PPARdelta) in lipid homeostasis and insulin resistance. In this study, we examined the effect of PPARdelta on sterol regulatory element-binding protein-1 (SREBP-1), a pivotal transcription factor controlling lipogenesis in hepatocytes. Treatment with GW0742, the PPARdelta agonist, or overexpression of PPARdelta markedly reduced intracellular lipid accumulation. GW0742 and PPARdelta overexpression in hepatocytes induced the expression of insulin-induced gene-1 (Insig-1), an endoplasmic reticulum protein braking SREBP activation, at both the mRNA and the protein levels. PPARdelta inhibited the proteolytic processing of SREBP-1 into the mature active form, thereby suppressing the expression of the lipogenic genes fatty acid synthase, stearyl CoA desaturase-1, and acetyl coenzyme A carboxylase. Our results revealed a direct binding of PPARdelta to a noncanonical peroxisome proliferator responsive element motif upstream of the transcription initiation site of human Insig-1. The disruption of this site diminished the induction of Insig-1, which suggested that Insig-1 is a direct PPARdelta target gene in hepatocytes. Knockdown of endogenous Insig-1 attenuated the suppressive effect of GW0742 on SREBP-1 and its target genes, indicating PPARdelta inhibited SREBP-1 activation via induction of Insig-1. Furthermore, overexpression of PPARdelta by intravenous infection with the PPARdelta adenovirus induced the expression of Insig-1, suppressed SREBP-1 activation, and, consequently, ameliorated hepatic steatosis in obese db/db mice.. Our study reveals a novel mechanism by which PPARdelta regulates lipogenesis, suggesting potential therapeutic applications of PPARdelta modulators in obesity and type 2 diabetes, as well as related steatotic liver diseases.

    Topics: Animals; Cell Line, Tumor; Diabetes Complications; Diabetes Mellitus; Hepatocytes; Humans; Lipogenesis; Liver; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Peroxisome Proliferators; PPAR delta; Response Elements; RNA, Small Interfering; Sterol Regulatory Element Binding Protein 1; Thiazoles; Transfection

2008