gw-7647 and Neoplasms

gw-7647 has been researched along with Neoplasms* in 2 studies

Reviews

1 review(s) available for gw-7647 and Neoplasms

ArticleYear
Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics.
    Journal of medicinal chemistry, 2016, Oct-27, Volume: 59, Issue:20

    Human cells possess tightly controlled mechanisms to rescue DNA replication following DNA damage caused by environmental and endogenous carcinogens using a set of low-fidelity translesion synthesis (TLS) DNA polymerases. These polymerases can copy over replication blocking DNA lesions while temporarily leaving them unrepaired, preventing cell death at the expense of increasing mutation rates and contributing to the onset and progression of cancer. In addition, TLS has been implicated as a major cellular mechanism promoting acquired resistance to genotoxic chemotherapy. Owing to its central role in mutagenesis and cell survival after DNA damage, inhibition of the TLS pathway has emerged as a potential target for the development of anticancer agents. This review will recap our current understanding of the structure and regulation of DNA polymerase complexes that mediate TLS and describe how this knowledge is beginning to translate into the development of small molecule TLS inhibitors.

    Topics: Animals; Antineoplastic Agents; Cell Survival; DNA Damage; DNA-Directed DNA Polymerase; Dose-Response Relationship, Drug; Humans; Molecular Structure; Neoplasms; Small Molecule Libraries; Structure-Activity Relationship

2016

Other Studies

1 other study(ies) available for gw-7647 and Neoplasms

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded new insight into brain cancer. However, the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs, which we refer to as the 'ground state', remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology, so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation, we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer.

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007