gw-7647 and Atherosclerosis

gw-7647 has been researched along with Atherosclerosis* in 3 studies

Other Studies

3 other study(ies) available for gw-7647 and Atherosclerosis

ArticleYear
C/EBP-β Is Differentially Affected by PPARα Agonists Fenofibric Acid and GW7647, But Does Not Change Apolipoprotein A-I Production During ER-Stress and Inflammation.
    Journal of cellular biochemistry, 2017, Volume: 118, Issue:4

    Increasing apolipoproteinA-I (apoA-I) production may be anti-atherogenic. Thus, there is a need to identify regulatory factors involved. Transcription of apoA-I involves peroxisome-proliferator-activated-receptor-alpha (PPARα) activation, but endoplasmic reticulum (ER) -stress and inflammation also influence apoA-I production. To unravel why PPARα agonist GW7647 increased apoA-I production compared to PPARα agonist fenofibric acid (FeAc) in human hepatocellular carcinoma (HepG2) and colorectal adenocarcinoma (CaCo-2) cells, gene expression profiles were compared. Microarray analyses suggested CCAAT/enhancer-binding-protein-beta (C/EBP-β) involvement in the FeAc condition. Therefore, C/EBP-β silencing and isoform-specific overexpression experiments were performed under ER-stressed, inflammatory and non-inflammatory conditions. mRNA expression of C/EBP-β, ATF3, NF-IL3 and GDF15 were upregulated by FeAc compared to GW7647 in both cell lines, while DDIT3 and DDIT4 mRNA were only upregulated in HepG2 cells. This ER-stress related signature was associated with decreased apoA-I secretion. After ER-stress induction by thapsigargin or FeAc addition, intracellular apoA-I concentrations decreased, while ER-stress marker expression (CHOP, XBP1s, C/EBP-β) increased. Cytokine addition increased intracellular C/EBP-β levels and lowered apoA-I concentrations. Although a C/EBP binding place is present in the apoA-I promoter, C/EBP-β silencing or isoform-specific overexpression did not affect apoA-I production in inflammatory, non-inflammatory and ER-stressed conditions. Therefore, C/EBP-β is not a target to influence hepatic apoA-I production. J. Cell. Biochem. 118: 754-763, 2017. © 2016 Wiley Periodicals, Inc.

    Topics: Apolipoprotein A-I; Atherosclerosis; Butyrates; Caco-2 Cells; CCAAT-Enhancer-Binding Protein-beta; Endoplasmic Reticulum Stress; Fenofibrate; Gene Expression Profiling; Gene Silencing; Hep G2 Cells; Humans; Inflammation; Phenylurea Compounds; PPAR alpha; RNA, Messenger; Thapsigargin

2017
Peroxisome proliferator-activated receptor-α activation promotes macrophage reverse cholesterol transport through a liver X receptor-dependent pathway.
    Arteriosclerosis, thrombosis, and vascular biology, 2011, Volume: 31, Issue:6

    Peroxisome proliferator-activated receptor-α (PPARα) activation has been shown in vitro to increase macrophage cholesterol efflux, the initial step in reverse cholesterol transport (RCT). However, it remains unclear whether PPARα activation promotes macrophage RCT in vivo.. We demonstrated that a specific potent PPARα agonist GW7647 inhibited atherosclerosis and promoted macrophage RCT in hypercholesterolemic mice expressing the human apolipoprotein A-I (apoA-I) gene. We compared the effect of GW7647 on RCT in human apoA-I transgenic (hA-ITg) mice with wild-type mice and showed that the PPARα agonist promoted RCT in hA-ITg mice to a much greater extent than in wild-type mice, indicating that human apoA-I expression is important for PPARα-induced RCT. We further investigated the dependence of the macrophage PPARα-liver X receptor (LXR) pathway on the promotion of RCT by GW7647. Primary murine macrophages lacking PPARα or LXR abolished the ability of GW7647 to promote RCT in hA-ITg mice. In concert, the PPARα agonist promoted cholesterol efflux and ATP binding cassette transporter A1/G1 expression in primary macrophages, and this was also by the PPARα-LXR pathway.. Our observations demonstrate that a potent PPARα agonist promotes macrophage RCT in vivo in a manner that is enhanced by human apoA-I expression and dependent on both macrophage PPARα and LXR expression.

    Topics: Animals; Apolipoprotein A-I; Atherosclerosis; Biological Transport; Butyrates; Cholesterol; Humans; Liver X Receptors; Macrophages; Mice; Orphan Nuclear Receptors; Phenylurea Compounds; PPAR alpha; Signal Transduction

2011
Macrophage expression of peroxisome proliferator-activated receptor-alpha reduces atherosclerosis in low-density lipoprotein receptor-deficient mice.
    Circulation, 2007, Sep-18, Volume: 116, Issue:12

    The peroxisome proliferator-activated receptor-alpha (PPARalpha) plays important roles in lipid metabolism, inflammation, and atherosclerosis. PPARalpha ligands have been shown to reduce cardiovascular events in high-risk subjects. PPARalpha expression by arterial cells, including macrophages, may exert local antiatherogenic effects independent of plasma lipid changes.. To examine the contribution of PPARalpha expression by bone marrow-derived cells in atherosclerosis, male and female low-density lipoprotein receptor-deficient (LDLR(-/-)) mice were reconstituted with bone marrow from PPARalpha(-/-) or PPARalpha(+/+) mice and challenged with a high-fat diet. Although serum lipids and lipoprotein profiles did not differ between the groups, the size of atherosclerotic lesions in the distal aorta of male and female PPARalpha(-/-) --> LDLR(-/-) mice was significantly increased (44% and 46%, respectively) compared with controls. Male PPARalpha(-/-) --> LDLR(-/-) mice also had larger (44%) atherosclerotic lesions in the proximal aorta than male PPARalpha(+/+) --> LDLR(-/-) mice. Peritoneal macrophages from PPARalpha(-/-) mice had increased uptake of oxidized LDL and decreased cholesterol efflux. PPARalpha(-/-) macrophages had lower levels of scavenger receptor B type I and ABCA1 protein expression and an accelerated response of nuclear factor-kappaB-regulated inflammatory genes. A laser capture microdissection analysis verified suppressed scavenger receptor B type I and increased nuclear factor-kappaB gene expression levels in vivo in atherosclerotic lesions of PPARalpha(-/-) --> LDLR(-/-) mice compared with the lesions of control PPARalpha(+/+) --> LDLR(-/-) mice.. These data demonstrate that PPARalpha expression by macrophages has antiatherogenic effects via modulation of cell cholesterol trafficking and inflammatory activity.

    Topics: Animals; Aortic Diseases; Atherosclerosis; Biological Transport; Bone Marrow Transplantation; Butyrates; Cells, Cultured; Female; Gene Expression Regulation; Inflammation; Lipid Metabolism; Lipoproteins, LDL; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Phenylurea Compounds; PPAR alpha; Pyrimidines; Radiation Chimera; Receptors, LDL

2007