gw-6471 and Kidney-Neoplasms

gw-6471 has been researched along with Kidney-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for gw-6471 and Kidney-Neoplasms

ArticleYear
PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.
    American journal of physiology. Cell physiology, 2015, Jun-01, Volume: 308, Issue:11

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.

    Topics: Animals; Carcinoma, Renal Cell; Cell Cycle Checkpoints; Cell Line, Tumor; Epithelial Cells; Gene Expression Regulation, Neoplastic; Humans; Kidney Neoplasms; Kidney Tubules; Metabolic Networks and Pathways; Mice; Mice, Nude; Organ Specificity; Oxazoles; Phosphorylation; PPAR alpha; Proto-Oncogene Proteins c-myc; RNA, Small Interfering; Signal Transduction; Tyrosine; Xenograft Model Antitumor Assays

2015
Inhibition of PPARα induces cell cycle arrest and apoptosis, and synergizes with glycolysis inhibition in kidney cancer cells.
    PloS one, 2013, Volume: 8, Issue:8

    Renal cell carcinoma (RCC) is the sixth most common cancer in the US. While RCC is highly metastatic, there are few therapeutics options available for patients with metastatic RCC, and progression-free survival of patients even with the newest targeted therapeutics is only up to two years. Thus, novel therapeutic targets for this disease are desperately needed. Based on our previous metabolomics studies showing alteration of peroxisome proliferator-activated receptor α (PPARα) related events in both RCC patient and xenograft mice materials, this pathway was further examined in the current study in the setting of RCC. PPARα is a nuclear receptor protein that functions as a transcription factor for genes including those encoding enzymes involved in energy metabolism; while PPARα has been reported to regulate tumor growth in several cancers, it has not been evaluated in RCC. A specific PPARα antagonist, GW6471, induced both apoptosis and cell cycle arrest at G0/G1 in VHL(+) and VHL(-) RCC cell lines (786-O and Caki-1) associated with attenuation of the cell cycle regulatory proteins c-Myc, Cyclin D1, and CDK4; this data was confirmed as specific to PPARα antagonism by siRNA methods. Interestingly, when glycolysis was blocked by several methods, the cytotoxicity of GW6471 was synergistically increased, suggesting a switch to fatty acid oxidation from glycolysis and providing an entirely novel therapeutic approach for RCC.

    Topics: Apoptosis; Carcinoma, Renal Cell; Cell Cycle Checkpoints; Cell Line; Cell Line, Tumor; Cell Survival; Cyclin D1; Cyclin-Dependent Kinase 4; Deoxyglucose; G1 Phase; Glucose; Glycolysis; Humans; Immunoblotting; Immunohistochemistry; Kidney Neoplasms; Oxazoles; PPAR alpha; Proto-Oncogene Proteins c-myc; Resting Phase, Cell Cycle; RNA Interference; Tyrosine

2013