gw-6471 has been researched along with Inflammation* in 5 studies
5 other study(ies) available for gw-6471 and Inflammation
Article | Year |
---|---|
Anti-Inflammatory Effects of Fucoxanthinol in LPS-Induced RAW264.7 Cells through the NAAA-PEA Pathway.
Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA-PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1β, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway. Topics: Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents; beta Carotene; Cytokines; Enzyme Inhibitors; Ethanolamines; Inflammation; Lipopolysaccharides; Mice; Nitric Oxide; Oxazoles; Palmitic Acids; PPAR alpha; RAW 264.7 Cells; Tyrosine | 2020 |
MG53 Protects against Sepsis-Induced Myocardial Dysfunction by Upregulating Peroxisome Proliferator-Activated Receptor-
The heart is one of the most commonly affected organs during sepsis. Mitsugumin-53 (MG53) has attracted attention in research due to its cardioprotective function. However, the role of MG53 in sepsis-induced myocardial dysfunction (SIMD) remains unknown. The purpose of this study was to explore the underlying mechanism of MG53 in SIMD and investigate its potential relationship with peroxisome proliferator-activated receptor-. The cecal ligation and puncture (CLP) model was created to induce SIMD in rats. Protein levels of MG53 and PPAR. The expression of MG53 and PPAR. Both MG53 and PPAR Topics: Animals; Apoptosis; Humans; Inflammation; Models, Biological; Muscle Proteins; Myocardium; Myocytes, Cardiac; Oxazoles; Oxidative Stress; PPAR alpha; Protective Agents; Rats, Sprague-Dawley; Sepsis; Survival Analysis; Tyrosine; Up-Regulation; Vesicular Transport Proteins | 2020 |
PPARα agonists inhibit inflammatory activation of macrophages through upregulation of β-defensin 1.
Effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists on cardiovascular outcome have been controversial. Although these agents primarily affect lipoprotein metabolism, their pleiotropic anti-inflammatory effect is one of the potential anti-atherosclerotic mechanisms. This study aimed to evaluate the effect of fenofibrate and gemfibrozil on inflammation in macrophages and reveal pathways these agents may affect.. The two PPARα agonists inhibited secretion of CXCL2, TNF-α, IL-6, activation of p65 of NF-κB, ERK, and TLR4 expression. These changes occurred simultaneously with upregulation and secretion of β-defensin 1, an inflammation-modulating peptide. To demonstrate the role of β-defensin 1, it was knocked-down by target-specific siRNA. The effects of PPARα agonists on TLR4 expression and chemokine secretion were obviously abrogated with this treatment. In experiments investigating whether β-defensin 1 acts extracellularly, inflammatory chemokines decreased significantly after the addition of recombinant β-defensin 1 or conditioned media to cells. In experiments designed to clarify if the effects of the two agents are PPARα-dependent, induction of mRNA and secretion β-defensin 1 and inhibition of chemokine release were clearly reduced with GW6471, a PPARα blocker.. Our results reveal the pathways by which fenofibrate and gemfibrozil inhibit LPS-induced inflammatory activation of macrophages. This study elucidated a novel anti-inflammatory mechanism that acts through PPARα, β-defensin 1, and TLR4 pathways. Topics: Animals; Anti-Inflammatory Agents; beta-Defensins; Cell Line; Culture Media, Conditioned; Dose-Response Relationship, Drug; Fenofibrate; Gemfibrozil; Inflammation; Inflammation Mediators; Lipopolysaccharides; Macrophage Activation; Macrophages; Mice; Oxazoles; PPAR alpha; RNA Interference; Signal Transduction; Toll-Like Receptor 4; Transfection; Tyrosine; Up-Regulation | 2015 |
The protective effect of fenofibrate against TNF-α-induced CD40 expression through SIRT1-mediated deacetylation of NF-κB in endothelial cells.
Fenofibrate, as a lipid-lowering drug in clinic, participates in the regulation of inflammatory response. Recently, increasing studies have indicated that sirtuin1 (SIRT1), a NAD+-dependent deacetylase, has potential anti-inflammatory effect in endothelial cells. However, whether the regulatory effect of fenofibrate on inflammation response is mediated by SIRT1 remains unclear. The aim of this study was to investigate the effect of fenofibrate on the expressions of SIRT1 and pro-inflammatory cytokine CD40 in endothelial cells and explore the underlying mechanisms. The results showed that fenofibrate upregulated SIRT1 expression and inhibited CD40 expression in TNF-α-stimulated endothelial cells, but these effects were reversed by peroxisome proliferator-activated receptor-α (PPARα) antagonist GW6471. Furthermore, SIRT1 inhibitors sirtinol/nicotinamide (NAM) or SIRT1 knockdown could attenuate the effect of fenofibrate on CD40 expression in endothelial cells. Importantly, NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) augmented the effect of fenofibrate on CD40 expression. Further study found that fenofibrate decreased the expression of acetylated-NF-κB p65 (Ac-NF-κB p65) in TNF-α-stimulated endothelial cells, which was abolished by SIRT1 knockdown. These results indicate that fenofibrate has protective effect against TNF-α-induced CD40 expression through SIRT1-mediated deacetylation of the p65 subunit of NF-κB. Topics: Acetylation; Antioxidants; Benzamides; CD40 Antigens; Cells, Cultured; Fenofibrate; Human Umbilical Vein Endothelial Cells; Humans; Hypolipidemic Agents; Inflammation; Naphthols; Niacinamide; Oxazoles; PPAR alpha; Pyrrolidines; RNA Interference; RNA, Small Interfering; Signal Transduction; Sirtuin 1; Thiocarbamates; Transcription Factor RelA; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation | 2014 |
Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain.
We have previously demonstrated antinociceptive effects of fatty acid amide hydrolase (FAAH) inhibition that were accompanied by increases in the levels of endocannabinoids (ECs) in the hind paw. Here, the effects of the FAAH inhibitor URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) on responses of spinal neurons were studied.. Extracellular single-unit recordings of dorsal horn neurons were made in anaesthetized rats with hind paw inflammation induced by lambda-carrageenan. Effects of intraplantar pre-administration of URB597, or vehicle, on carrageenan-evoked expansion of peripheral receptive fields of spinal neurons and mechanically evoked responses of neurons were studied. The cannabinoid receptor type 1 (CB(1)) antagonist AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and the peroxisome proliferator-activated receptor (PPAR)-alpha antagonist GW6471 ([(2S)-2-[[(1Z)-1-methyl-3-oxo-3-[4-(trifluoromethyl)phenyl]-1-propenyl]amino]-3-[4-[2-(5-methyl-2-phenyl-4-oxa zolyl)ethoxy]phenyl]propyl]-carbamic acid ethyl ester) were used to investigate the roles of these receptors in mediating the effects of URB597.. URB597 (25 microg in 50 microL) pretreatment significantly inhibited carrageenan-evoked receptive field expansion and this was significantly reversed by co-administration of the PPAR-alpha antagonist but not the CB(1) antagonist. Pretreatment with the PPAR-alpha receptor agonist WY14643 ([[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid) also significantly inhibited receptive field expansion. URB597 (25 or 100 microg in 50 microL) had no significant effect on mechanically evoked responses of spinal neurons.. URB597 inhibited receptive field expansions but not mechanically evoked responses of spinal neurons in rats with hind paw inflammation. These effects were blocked by PPAR-alpha receptor antagonism. These data support the contention that URB597 exerts its antinociceptive effects by indirect inhibition of sensitization of neuronal responses at least partly through PPAR-alpha activation due to enhanced EC levels. Topics: Amidohydrolases; Analgesia; Animals; Benzamides; Carbamates; Carrageenan; Disease Models, Animal; Inflammation; Oxazoles; Pain; Piperidines; PPAR gamma; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Tyrosine | 2008 |