gw-6471 has been researched along with Disease-Models--Animal* in 11 studies
11 other study(ies) available for gw-6471 and Disease-Models--Animal
Article | Year |
---|---|
Co-option of PPARα in the regulation of lipogenesis and fatty acid oxidation in CLA-induced hepatic steatosis.
Nonalcoholic-fatty-liver-disease (NAFLD) is the result of imbalances in hepatic lipid partitioning and is linked to dietary factors. We demonstrate that conjugated linoleic acid (CLA) when given to mice as a dietary supplement, induced an enlarged liver, hepatic steatosis, and increased plasma levels of fatty acid (FA), alanine transaminase, and triglycerides. The progression of NAFLD and insulin resistance was reversed by GW6471 a small-molecule antagonist of peroxisome proliferator-activated receptor α (PPARα). Transcriptional profiling of livers revealed that the genes involved in FA oxidation and lipogenesis as two core gene programs controlled by PPARα in response to CLA and GW6471 including Acaca and Acads. Bioinformatic analysis of PPARα ChIP-seq data set and ChIP-qPCR showed that GW6471 blocks PPARα binding to Acaca and Acads and abolishes the PPARα-mediated local histone modifications of H3K27ac and H3K4me1 in CLA-treated hepatocytes. Thus, our findings reveal a dual role of PPARα in the regulation of lipid homeostasis and highlight its druggable nature in NAFLD. Topics: Acetyl-CoA Carboxylase; Acyl-CoA Dehydrogenase; Animals; Cells, Cultured; Disease Models, Animal; Fatty Acids; Gene Expression Regulation, Enzymologic; Hepatocytes; Histones; Insulin Resistance; Linoleic Acids, Conjugated; Lipogenesis; Liver; Male; Mice; Non-alcoholic Fatty Liver Disease; Oxazoles; Oxidation-Reduction; PPAR alpha; Signal Transduction; Transcriptional Activation; Tyrosine | 2021 |
Selective peroxisome proliferator-activated receptor-α modulator K-877 regulates the expression of ATP-binding cassette transporter A1 in pancreatic beta cells.
ATP-binding cassette transporter A1 (ABCA1) protein is a pivotal regulator of cholesterol and phospholipid efflux from cells to high-density lipoprotein (HDL) particles. Pancreatic ABCA1 functions in beta cell cholesterol homeostasis and affects insulin secretion. We investigated the effect of pemafibrate (K-877), a novel selective PPARα modulator (SPPARMα), on pancreatic ABCA1 expression. In vivo experiment, mice were divided into four treatment groups, namely, normal food plus placebo, high fat diet (HFD) plus placebo, normal food plus K-877 (0.3 mg/kg/day), or HFD plus K-877 (0.3 mg/kg/day), and treated for eight weeks. The results in vitro experiment indicate that K-877 treatment increased levels of ABCA1 mRNA, as well as protein, subsequently reduced the cellular cholesterol content in INS-1 cells. PPARα specific antagonist GW6471 attenuate K-877 induced ABCA1 expression in INS-1 cells. ABCA1 promoter activity increased with K-877 treatment at concentration 1 μM and 10 μM. Glucose-stimulated insulin secretion was ameliorated by K-877 treatment in INS-1 cells and isolated mouse islets. Although the expression of ABCA1 was reduced in mice with HFD treatment, both ABCA1 protein and mRNA levels were increased in mice with K-877 treatment. K-877 treatment improved glucose intolerance induced by HFD in mice. These findings raise the possibility that K-877 may affect insulin secretion by controlling ABCA1 expression in pancreatic beta cells. Topics: Animals; ATP Binding Cassette Transporter 1; Benzoxazoles; Butyrates; Cell Line, Tumor; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Dyslipidemias; Glucose; Glucose Intolerance; Humans; Hypolipidemic Agents; Insulin; Insulin-Secreting Cells; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Oxazoles; PPAR alpha; Promoter Regions, Genetic; Rats; RNA, Messenger; Tyrosine | 2018 |
Opposing Effects of PPARα Agonism and Antagonism on Refractive Development and Form Deprivation Myopia in Guinea Pigs.
To determine if drug-induced peroxisome proliferator-activated receptor α (PPARα) signal pathway modulation affects refractive development and myopia in guinea pigs.. Pigmented guinea pigs were randomly divided into normal vision (unoccluded) and form deprivation myopia (FDM) groups. Each group received daily peribulbar injections of either a vehicle or (1) PPARα agonist, GW7647, clofibrate, or bezafibrate or (2) PPARα antagonist, GW6471, for 4 weeks. Baseline and posttreatment refraction and ocular biometric parameters were measured. Immunofluorescent staining of PPARα and two of its downstream readouts, cytosolic malic enzyme 1 (ME1) and apolipoproteinA II (apoA-II), was undertaken in selected scleral sections. Western blot analysis determined collagen type I expression levels.. GW6471 induced a myopic shift in unoccluded eyes, but had no effect on form-deprived eyes. Conversely, GW7647 inhibited FDM progression without altering unoccluded eyes. Bezafibrate and clofibrate had effects on refraction similar to those of GW7647 in unoccluded and form-deprived eyes. GW6471 downregulated collagen type I expression in unoccluded eyes whereas bezafibrate inhibited collagen type I decreases in form-deprived eyes. GW6471 also reduced the density of ME1- and apoA-II-stained cells in unoccluded eyes whereas bezafibrate increased apoA-II-positive cell numbers in form-deprived eyes.. As GW7647 and GW6471 had opposing effects on myopia development, PPARα signaling modulation may be involved in this condition in guinea pigs. Fibrates are potential candidates for treating myopia since they reduced both FDM and the associated axial elongation. Bezafibrate also inhibited form deprivation-induced decreases in scleral collagen type I expression and the density of apoA-II expressing cells. Topics: Animals; Apolipoprotein A-II; Bezafibrate; Biometry; Blotting, Western; Butyrates; Clofibrate; Collagen Type I; Disease Models, Animal; Electroretinography; Fluorescent Antibody Technique, Indirect; Guinea Pigs; Intraocular Pressure; Malate Dehydrogenase; Myopia; Oxazoles; Phenylurea Compounds; PPAR alpha; Refraction, Ocular; Sensory Deprivation; Tyrosine | 2018 |
A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy.
Heart failure preceded by hypertrophy is a leading cause of death, and sex differences in hypertrophy are well known, although the basis for these sex differences is poorly understood.. This study used a systems biology approach to investigate mechanisms underlying sex differences in cardiac hypertrophy. Male and female mice were treated for 2 and 3 weeks with angiotensin II to induce hypertrophy. Sex differences in cardiac hypertrophy were apparent after 3 weeks of treatment. RNA sequencing was performed on hearts, and sex differences in mRNA expression at baseline and following hypertrophy were observed, as well as within-sex differences between baseline and hypertrophy. Sex differences in mRNA were substantial at baseline and reduced somewhat with hypertrophy, as the mRNA differences induced by hypertrophy tended to overwhelm the sex differences. We performed an integrative analysis to identify mRNA networks that were differentially regulated in the 2 sexes by hypertrophy and obtained a network centered on PPARα (peroxisome proliferator-activated receptor α). Mouse experiments further showed that acute inhibition of PPARα blocked sex differences in the development of hypertrophy.. The data in this study suggest that PPARα is involved in the sex-dimorphic regulation of cardiac hypertrophy. Topics: Angiotensin II; Animals; Cardiomegaly; Disease Models, Animal; Female; Gene Expression Regulation; Gene Regulatory Networks; Male; Mice, Inbred C57BL; MicroRNAs; Myocardium; Oxazoles; PPAR alpha; Protein Interaction Maps; RNA, Messenger; Sex Characteristics; Sex Factors; Signal Transduction; Systems Biology; Time Factors; Tyrosine | 2017 |
The effects of herbal composition Gambigyeongsinhwan (4) on hepatic steatosis and inflammation in Otsuka Long-Evans Tokushima fatty rats and HepG2 cells.
Hepatic steatosis has risen rapidly in parallel with a dramatic increase in obesity. The aim of this study was to determine whether the herbal composition Gambigyeongsinhwan (4) (GGH(4)), composed of Curcuma longa L. (Zingiberaceae), Alnus japonica (Thunb.) Steud. (Betulaceae), and the fermented traditional Korean medicine Massa Medicata Fermentata, regulates hepatic steatosis and inflammation.. The effects of GGH(4) on hepatic steatosis and inflammation in Otsuka Long-Evans Tokushima fatty (OLETF) rats and HepG2 cells were examined using Oil red O, hematoxylin and eosin, and toluidine blue staining, immunohistochemistry, quantitative real-time polymerase chain reaction, and peroxisome proliferator-activated receptor α (PPARα) transactivation assay.. Administration of GGH(4) to OLETF rats improved hepatic steatosis and lowered serum levels of alanine transaminase, total cholesterol, triglycerides, and free fatty acids. GGH(4) increased mRNA levels of fatty acid oxidation enzymes (ACOX, HD, CPT-1, and MCAD) and decreased mRNA levels of lipogenesis genes (FAS, ACC1, C/EBPα, and SREBP-1c) in the liver of OLETF rats. In addition, infiltration of inflammatory cells and expression of inflammatory cytokines (CD68, TNFα, and MCP-1) in liver tissue were reduced by GGH(4). Treatment of HepG2 cells with a mixture of oleic acid and palmitoleic acid induced significant lipid accumulation, but GGH(4) inhibited lipid accumulation by regulating the expression of hepatic fatty acid oxidation and lipogenic genes. GGH(4) also increased PPARα reporter gene expression. These effects of GGH(4) were similar to those of the PPARα activator fenofibrate, whereas the PPARα antagonist GW6471 reversed the inhibitory effects of GGH(4) on lipid accumulation in HepG2 cells.. These results suggest that GGH(4) inhibits obesity-induced hepatic steatosis and that this process may be mediated by regulation of the expression of PPARα target genes and lipogenic genes. GGH(4) also suppressed obesity-related hepatic inflammation. Thus, GGH(4) may be a promising drug for the treatment of obesity-related liver diseases. Topics: Alanine Transaminase; Animals; Anti-Inflammatory Agents; Biomarkers; Cytokines; Disease Models, Animal; Fenofibrate; Gene Expression Regulation, Enzymologic; Hep G2 Cells; Hepatitis; Hepatocytes; Humans; Hypolipidemic Agents; Inflammation Mediators; Lipids; Lipogenesis; Liver; Male; Mice; Non-alcoholic Fatty Liver Disease; Obesity; Oxazoles; Plant Extracts; PPAR alpha; Rats, Inbred OLETF; RNA, Messenger; Transfection; Tyrosine | 2017 |
In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.
Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Topics: alpha7 Nicotinic Acetylcholine Receptor; Anesthetics, Local; Animals; Benzamides; Bridged Bicyclo Compounds; Cocaine; Conditioning, Operant; Disease Models, Animal; Fenofibrate; Hypolipidemic Agents; Male; Mice; Mice, Inbred ICR; Nicotine; Nicotinic Agonists; Oxazoles; PPAR alpha; Pyrimidines; Self Administration; Substance Withdrawal Syndrome; Tobacco Use Disorder; Tyrosine | 2017 |
Peroxisome Proliferator-Activated Receptor-α Inhibition Protects Against Doxorubicin-Induced Cardiotoxicity in Mice.
Doxorubicin is an effective chemotherapeutic drug against a considerable number of malignancies. However, its toxic effects on myocardium are confirmed as major limit of utilization. PPAR-α is highly expressed in the heart, and its activation leads to an increased cardiac fatty acid oxidation and cardiomyocyte necrosis. This study was performed to adjust the hypothesis that PPAR-α receptor inhibition protects against doxorubicin-induced cardiac dysfunction in mice. Male Balb/c mice were used in this study. Left atria were isolated, and their contractility was measured in response to electrical field stimulation in a standard organ bath. PPAR-α activity was measured using specific PPAR-α antibody in an ELISA-based system coated with double-strand DNA containing PPAR-α response element sequence. Moreover, cardiac MDA and TNF-α levels were measured by ELISA method. Following incubation with doxorubicin (35 µM), a significant reduction in atrial contractility was observed (P < 0.001). Pretreatment of animals with a selective PPAR-α antagonist, GW6471, significantly improved doxorubicin-induced atrial dysfunction (P < 0.001). Furthermore, pretreatment of the mice with a non-selective cannabinoid agonist, WIN55212-2, significantly decreased PPAR-α activity in cardiac tissue, subsequently leading to significant improvement in doxorubicin-induced atrial dysfunction (P < 0.001). Also, GW6471 and WIN significantly reduced cardiac MDA and TNF-α levels compared with animals receiving doxorubicin (P < 0.001). The study showed that inhibition of PPAR-α is associated with protection against doxorubicin-induced cardiotoxicity in mice, and cannabinoids can potentiate the protection by PPAR-α blockade. Moreover, PPAR-α may be considered as a target to prevent cardiotoxicity induced by doxorubicin in patients undergoing chemotherapy. Topics: Animals; Atrial Function, Left; Benzoxazines; Cannabinoid Receptor Agonists; Cardiotonic Agents; Cardiotoxicity; Cytoprotection; Disease Models, Animal; Doxorubicin; Heart Diseases; Male; Malondialdehyde; Mice, Inbred BALB C; Morpholines; Myocardial Contraction; Myocytes, Cardiac; Naphthalenes; Oxazoles; PPAR alpha; Signal Transduction; Tumor Necrosis Factor-alpha; Tyrosine | 2016 |
Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2.
Cannabinoid and PPAR receptors show well established interactions in a set of physiological effects. Regarding the seizure-modulating properties of both classes of receptors, the present study aimed to evaluate the roles of the PPAR-gamma, PPAR-alpha and CB1 receptors on the anticonvulsant effects of WIN 55,212-2 (WIN, a non selective cannabinoid agonist). The clonic seizure thresholds after intravenous administration of pentylenetetrazole (PTZ) were assessed in mice weighing 23-30 g. WIN increased the seizure threshold dose dependently. Pretreatment with pioglitazone, as a PPARγ agonist, potentiated the anticonvulsant effects of WIN, while PPARγ antagonist inhibited these anticonvulsant effects partially. On the other hand PPARα antagonist reduced the anticonvulsant effects of WIN significantly. Finally the combination of CB1 antagonist and PPARα antagonist could completely block the anticonvulsant properties of WIN. Taken together, these results show for the first time that a functional interaction exists between cannabinoid and PPAR receptors in the modulation of seizure susceptibility. Topics: Anilides; Animals; Anticonvulsants; Benzoxazines; Cannabinoid Receptor Antagonists; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Male; Mice; Morpholines; Naphthalenes; Oxazoles; Pentylenetetrazole; Peroxisome Proliferator-Activated Receptors; Pioglitazone; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Seizures; Thiazolidinediones; Tyrosine | 2015 |
Effects of ERK1/2/PPARα/SCAD signal pathways on cardiomyocyte hypertrophy induced by insulin-like growth factor 1 and phenylephrine.
Short-chain acyl-CoA dehydrogenase (SCAD) is a key enzyme in fatty acid oxidation. In the present study we aim to investigate the changes in SCAD between pathological and physiological cardiomyocyte hypertrophy. We also explore the different signaling pathways of pathological and physiological cardiomyocyte hypertrophy.. After neonatal rat cardiomyocytes were treated as setups, cell surface area, expression of SCAD, PPARα, phospho-ERK1/2, activity of SCAD, free fatty acid content and ATP content in the cardiomyocytes were measured.. Neonatal rat cardiomyocytes treated by PE showed an increased cell surface area and free fatty acid content, increased ERK1/2 phosphorylation, decreased expression of PPARα, decreased expression and activity of SCAD and decreased levels of ATP. Neonatal rat cardiomyocytes treated by IGF-1 showed the reverse effects except for the cell surface area. PPARα inhibitor GW6471 and PPARα activator Fenofibrate treatments abrogated the effects induced by IGF-1 and PE in cardiomyocytes respectively, as well as ERK1/2 activator EGF and ERK1/2 inhibitor PD98059.. SCAD has different changes between pathological and physiological cardiomyocyte hypertrophy. The ERK1/2/PPARα/SCAD signaling pathways play different roles in pathological and physiological cardiomyocyte hypertrophy. SCAD may be used as a new target to prevent the development of pathological cardiac hypertrophy. Topics: Animals; Animals, Newborn; Butyryl-CoA Dehydrogenase; Cardiomegaly; Disease Models, Animal; Fatty Acids; Fenofibrate; Flavonoids; Insulin-Like Growth Factor I; MAP Kinase Signaling System; Myocytes, Cardiac; Oxazoles; Phenylephrine; Phosphorylation; PPAR alpha; Rats; Rats, Sprague-Dawley; Signal Transduction; Tyrosine | 2015 |
Effects of PPARα/PGC-1α on the energy metabolism remodeling and apoptosis in the doxorubicin induced mice cardiomyocytes in vitro.
Dilated cardiomyopathy is the most frequent form of myocardial disease. Many factors contribute to dilated cardiomyopathy, for instance, long-term use of doxorubicin, one of the anthracyclines clinically used for cancer chemotherapy, result in dilated cardiomyopathy and congestive heart failure. However, the mechanism underlining doxorubicin-induced cardiomyocyte is still not fully understood. In this study, we evaluate the effects and their mechanisms of PPARα and PGC-1α pathways in doxorubicin induced mice cardiomyocytes. In vitro, cardiomyocytes isolated from hearts of adult FVB/NJ mice were treated with doxorubicin, GW 6471 (PPARα inhibitors) and WY14643 (PPARα agonists). The expression of PPARα and PGC-1α were detected via western blotting and Quantitative Real-Time PCR methods. Changes in energy and substrate metabolism were analyzed. MTT and flow cytometry were used for cell proliferation and apoptosis analysis. We detected expression of PPARα and PGC-1α was significantly higher in control group than doxorubicin group. Mitochondrial dysfunction was found in doxorubicin group including lower content of high-energy phosphates, significantly decreased mitochondrial ANT transport activity and markedly reduced mitochondrial membrane potential compared with control group. Metabolic remodeling existed in doxorubicin group because of higher concentration of free fatty acid and glucose consumption than of control group. More accumulations of reactive oxygen species were detected in doxorubicin group. The decreased cell viability and increased cell apoptosis observed in doxorubicin group. Severe apoptosis in doxorubicin group was verified by a set of markers including Bax, Bcl-2, cytosolic cytochrome c and caspase-3 up-regulation expression. These findings indicate that the PPARα and PGC-1α are closely involved in energy metabolism remodeling and apoptosis in cardiomyocytes. Topics: Animals; Antibiotics, Antineoplastic; Apoptosis; Biomarkers; Cell Proliferation; Disease Models, Animal; Doxorubicin; Energy Metabolism; Fatty Acids, Nonesterified; Gene Expression Regulation; Glucose; Humans; Mice; Mitochondria; Myocytes, Cardiac; Oxazoles; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; PPAR alpha; Pyrimidines; Reactive Oxygen Species; Tyrosine; Up-Regulation | 2015 |
Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain.
We have previously demonstrated antinociceptive effects of fatty acid amide hydrolase (FAAH) inhibition that were accompanied by increases in the levels of endocannabinoids (ECs) in the hind paw. Here, the effects of the FAAH inhibitor URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) on responses of spinal neurons were studied.. Extracellular single-unit recordings of dorsal horn neurons were made in anaesthetized rats with hind paw inflammation induced by lambda-carrageenan. Effects of intraplantar pre-administration of URB597, or vehicle, on carrageenan-evoked expansion of peripheral receptive fields of spinal neurons and mechanically evoked responses of neurons were studied. The cannabinoid receptor type 1 (CB(1)) antagonist AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and the peroxisome proliferator-activated receptor (PPAR)-alpha antagonist GW6471 ([(2S)-2-[[(1Z)-1-methyl-3-oxo-3-[4-(trifluoromethyl)phenyl]-1-propenyl]amino]-3-[4-[2-(5-methyl-2-phenyl-4-oxa zolyl)ethoxy]phenyl]propyl]-carbamic acid ethyl ester) were used to investigate the roles of these receptors in mediating the effects of URB597.. URB597 (25 microg in 50 microL) pretreatment significantly inhibited carrageenan-evoked receptive field expansion and this was significantly reversed by co-administration of the PPAR-alpha antagonist but not the CB(1) antagonist. Pretreatment with the PPAR-alpha receptor agonist WY14643 ([[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid) also significantly inhibited receptive field expansion. URB597 (25 or 100 microg in 50 microL) had no significant effect on mechanically evoked responses of spinal neurons.. URB597 inhibited receptive field expansions but not mechanically evoked responses of spinal neurons in rats with hind paw inflammation. These effects were blocked by PPAR-alpha receptor antagonism. These data support the contention that URB597 exerts its antinociceptive effects by indirect inhibition of sensitization of neuronal responses at least partly through PPAR-alpha activation due to enhanced EC levels. Topics: Amidohydrolases; Analgesia; Animals; Benzamides; Carbamates; Carrageenan; Disease Models, Animal; Inflammation; Oxazoles; Pain; Piperidines; PPAR gamma; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Tyrosine | 2008 |