gw-1000 and Huntington-Disease

gw-1000 has been researched along with Huntington-Disease* in 4 studies

Trials

1 trial(s) available for gw-1000 and Huntington-Disease

ArticleYear
A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington's disease.
    Journal of neurology, 2016, Volume: 263, Issue:7

    Huntington's disease (HD) is a neurodegenerative disease for which there is no curative treatment available. Given that the endocannabinoid system is involved in the pathogenesis of HD mouse models, stimulation of specific targets within this signaling system has been investigated as a promising therapeutic agent in HD. We conducted a double-blind, randomized, placebo-controlled, cross-over pilot clinical trial with Sativex(®), a botanical extract with an equimolecular combination of delta-9-tetrahydrocannabinol and cannabidiol. Both Sativex(®) and placebo were dispensed as an oral spray, to be administered up to 12 sprays/day for 12 weeks. The primary objective was safety, assessed by the absence of more severe adverse events (SAE) and no greater deterioration of motor, cognitive, behavioral and functional scales during the phase of active treatment. Secondary objectives were clinical improvement of Unified Huntington Disease Rating Scale scores. Twenty-six patients were randomized and 24 completed the trial. After ruling-out period and sequence effects, safety and tolerability were confirmed. No differences on motor (p = 0.286), cognitive (p = 0.824), behavioral (p = 1.0) and functional (p = 0.581) scores were detected during treatment with Sativex(®) as compared to placebo. No significant molecular effects were detected on the biomarker analysis. Sativex(®) is safe and well tolerated in patients with HD, with no SAE or clinical worsening. No significant symptomatic effects were detected at the prescribed dosage and for a 12-week period. Also, no significant molecular changes were observed on the biomarkers. Future study designs should consider higher doses, longer treatment periods and/or alternative cannabinoid combinations.Clincaltrals.gov identifier: NCT01502046.

    Topics: Adult; Amino Acids; Amyloid beta-Peptides; Biogenic Monoamines; Cannabidiol; Cross-Over Studies; Dronabinol; Drug Combinations; Endocannabinoids; Female; Fibroblasts; Follow-Up Studies; Gene Expression Regulation; Humans; Huntington Disease; Male; Mental Status Schedule; MicroRNAs; Middle Aged; Outcome Assessment, Health Care; Peptide Fragments; Pilot Projects; Plant Extracts; Plant Structures; Severity of Illness Index; tau Proteins

2016

Other Studies

3 other study(ies) available for gw-1000 and Huntington-Disease

ArticleYear
Cannabinoids for Treatment of Dystonia in Huntington's Disease.
    Journal of Huntington's disease, 2018, Volume: 7, Issue:2

    Motor symptoms in Huntington's disease (HD) are heterogeneous with dystonia being described as a symptom with a very high prevalence not only in juvenile cases.. Treatment options for dystonia are limited. Cannabinoids have been described as a potential treatment for patients with dystonia of a different origin. Here, we present early onset HD patients with a marked improvement of motor symptoms mainly due to alleviation of dystonia due to treatment with cannabinoids. In addition we review the current literature concerning the use of cannabinoids in HD.. The Unified Huntington's Disease Rating Scale (UHDRS) motor score, including a chorea and dystonia subscore, was conducted before and after the start of cannabinoids in seven patients without any other changes in medication.. The UHDRS motor score and the dystonia subscore (±SD) improved from 70.9 (25.5) to 60.6 (26.9) with a mean change of 10.3 [95% CI 6.0-14.6] and from 12.3 (4.0) to 8.0 (3.6) with a mean change of 4.3 [95% CI 2.3-6.3], respectively (both p = 0.018).. Improvement of motor symptoms, mainly dystonia, led to several relevant improvements from a global clinical perspective such as improvement of care, gait and fine motor skills and weight gain. Moreover, we observed changes in behavior with less irritability and apathy, as well as less hypersalivation in some cases.

    Topics: Adolescent; Adult; Cannabidiol; Cannabinoids; Dronabinol; Drug Combinations; Dystonia; Female; Humans; Huntington Disease; Male; Treatment Outcome

2018
Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors.
    ACS chemical neuroscience, 2012, May-16, Volume: 3, Issue:5

    We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this combination are blocked by these antagonists and hence that they do result from an activation of both CB(1) and CB(2) receptors. In summary, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying signs of disease progression in a proinflammatory model of HD, which adds to previous data obtained in models priming oxidative mechanisms of striatal injury. However, the interest here is that, in contrast

    Topics: Animals; Cannabidiol; Cannabinoids; Disease Models, Animal; Dronabinol; Drug Combinations; Drug Therapy, Combination; Huntington Disease; Inflammation; Male; Malonates; Phytotherapy; Plant Extracts; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2012
Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's disease.
    Journal of neuroscience research, 2011, Volume: 89, Issue:9

    We studied whether combinations of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, provide neuroprotection in rat models of Huntington's disease (HD). We used rats intoxicated with 3-nitropropionate (3NP) that were given combinations of Δ(9)-THC- and CBD-enriched botanical extracts. The issue was also studied in malonate-lesioned rats. The administration of Δ(9)-THC- and CBD-enriched botanical extracts combined in a ratio of 1:1 as in Sativex attenuated 3NP-induced GABA deficiency, loss of Nissl-stained neurons, down-regulation of CB(1) receptor and IGF-1 expression, and up-regulation of calpain expression, whereas it completely reversed the reduction in superoxide dismutase-1 expression. Similar responses were generally found with other combinations of Δ(9)-THC- and CBD-enriched botanical extracts, suggesting that these effects are probably related to the antioxidant and CB(1) and CB(2) receptor-independent properties of both phytocannabinoids. In fact, selective antagonists for both receptor types, i.e., SR141716 and AM630, respectively, were unable to prevent the positive effects on calpain expression caused in 3NP-intoxicated rats by the 1:1 combination of Δ(9)-THC and CBD. Finally, this combination also reversed the up-regulation of proinflammatory markers such as inducible nitric oxide synthase observed in malonate-lesioned rats. In conclusion, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying disease progression in HD, a disorder that is currently poorly managed in the clinic, prompting an urgent need for clinical trials with agents showing positive results in preclinical studies.

    Topics: Animals; Cannabidiol; Cannabinoids; Caudate Nucleus; Cells, Cultured; Disease Models, Animal; Disease Progression; Dronabinol; Drug Combinations; Huntington Disease; Male; Neostriatum; Neuroprotective Agents; Phytotherapy; Plant Extracts; Putamen; Rats; Rats, Sprague-Dawley

2011