gw-1000 has been researched along with Disease-Models--Animal* in 5 studies
1 review(s) available for gw-1000 and Disease-Models--Animal
Article | Year |
---|---|
Endocannabinoid pathways and their role in multiple sclerosis-related muscular dysfunction.
Endocannabinoids are endogenous agonists of the mammalian cannabinoid receptors CB(1) and CB(2), and they appear to be produced in tissues as an adaptive reaction to re-establish normal homeostasis when this is acutely altered. However, the production of endocannabinoids can be altered pathologically. The two most widely studied endocannabinoids are anandamide and 2-arachidonoyl glycerol. The levels of these endogenous modulators are regulated in different and sometimes opposing ways, and alterations in cerebrospinal fluid and/or spinal cord levels have been documented in animal models of neurodegenerative diseases and in samples from patients with multiple sclerosis (MS). Modulation of the endocannabinoid system has been shown to have therapeutic potential in a number of disease states. Sativex(®) (nabiximols, USAN name) contains the two main phytocannabinoids from Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 ratio, and it acts as an endocannabinoid system modulator. In an experimental mouse model of MS-related spasticity, Sativex dose-dependently improved hind limb flexion/stiffness and a dosage of 10 mg/kg was shown to be as effective as the most widely established anti-spasticity treatment baclofen (5 mg/kg). These findings with Sativex are very promising and offer encouragement for MS patients, the majority of whom will develop spasticity-related disabling and recalcitrant symptoms. Furthermore, research into the endocannabinoid system may offer potential in other neurodegenerative, inflammatory and pain disorders. Topics: Animals; Cannabidiol; Disease Models, Animal; Dronabinol; Drug Combinations; Endocannabinoids; Mice; Multiple Sclerosis; Muscle Spasticity; Muscle, Skeletal; Plant Extracts | 2011 |
4 other study(ies) available for gw-1000 and Disease-Models--Animal
Article | Year |
---|---|
A Sativex(®) -like combination of phytocannabinoids as a disease-modifying therapy in a viral model of multiple sclerosis.
Sativex(®) is an oromucosal spray, containing equivalent amounts of Δ(9) -tetrahydrocannabinol (Δ(9) -THC) and cannabidiol (CBD)-botanical drug substance (BDS), which has been approved for the treatment of spasticity and pain associated to multiple sclerosis (MS). In this study, we investigated whether Sativex may also serve as a disease-modifying agent in the Theiler's murine encephalomyelitis virus-induced demyelinating disease model of MS.. A Sativex-like combination of phytocannabinoids and each phytocannabinoid alone were administered to mice once they had established MS-like symptoms. Motor activity and the putative targets of these cannabinoids were assessed to evaluate therapeutic efficacy. The accumulation of chondroitin sulfate proteoglycans (CSPGs) and astrogliosis were assessed in the spinal cord and the effect of Sativex on CSPGs production was evaluated in astrocyte cultures.. Sativex improved motor activity - reduced CNS infiltrates, microglial activity, axonal damage - and restored myelin morphology. Similarly, we found weaker vascular cell adhesion molecule-1 staining and IL-1β gene expression but an up-regulation of arginase-1. The astrogliosis and accumulation of CSPGs in the spinal cord in vehicle-infected animals were decreased by Sativex, as was the synthesis and release of CSPGs by astrocytes in culture. We found that CBD-BDS alone alleviated motor deterioration to a similar extent as Sativex, acting through PPARγ receptors whereas Δ(9) -THC-BDS produced weaker effects, acting through CB2 and primarily CB1 receptors.. The data support the therapeutic potential of Sativex to slow MS progression and its relevance in CNS repair. Topics: Animals; Cannabidiol; Disease Models, Animal; Disease Progression; Dose-Response Relationship, Drug; Dronabinol; Drug Combinations; Drug Therapy, Combination; Mice; Mice, Inbred Strains; Multiple Sclerosis; Plant Extracts; Theilovirus | 2015 |
Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy.
Cannabinoids are neuroprotective in models of neurodegenerative dementias. Their effects are mostly mediated through CB1 and CB2 receptor-dependent modulation of excitotoxicity, inflammation, oxidative stress, and other processes. We tested the effects of Sativex®, a mixture of Δ9-tetrahydrocannabinol and cannabidiol, acting on both CB1 and CB2 receptors, in parkin-null, human tau overexpressing (PK-/-/TauVLW) mice, a model of complex frontotemporal dementia, parkinsonism, and lower motor neuron disease. The animals received Sativex®, 4.63 mg/kg, ip, daily, for one month, at six months of age, at the onset of the clinical symptoms. We evaluated the effects of Sativex® on behavior, dopamine neurotransmission, glial activation, redox state, mitochondrial activity, and deposition of abnormal proteins. PK-/-/TauVLW mice developed the neurological deficits, but those treated with Sativex® showed less abnormal behaviors related to stress, less auto and hetero-aggression, and less stereotypy. Sativex® significantly reduced the intraneuronal, MAO-related free radicals produced during dopamine metabolism in the limbic system. Sativex® also decreased gliosis in cortex and hippocampus, increased the ratio reduced/oxidized glutathione in the limbic system, reduced the levels of iNOS, and increased those of complex IV in the cerebral cortex. With regard to tau and amyloid pathology, Sativex® reduced the deposition of both in the hippocampus and cerebral cortex of PK-/-/TauVLW mice and increased autophagy. Sativex®, even after a short administration in animals with present behavioral and pathological abnormalities, improves the phenotype, the oxidative stress, and the deposition of proteins in PK-/-/TauVLW mice, a model of complex neurodegenerative disorders. Topics: Amyloidosis; Animals; Behavior, Animal; Biogenic Monoamines; Cannabidiol; Disease Models, Animal; Dopamine; Dronabinol; Drug Combinations; Frontotemporal Dementia; Glutathione; Humans; Male; Mice; Mice, Neurologic Mutants; Mice, Transgenic; Neuroprotective Agents; Phytotherapy; Plant Extracts; Synaptic Transmission; Tauopathies | 2013 |
Sativex-like combination of phytocannabinoids is neuroprotective in malonate-lesioned rats, an inflammatory model of Huntington's disease: role of CB1 and CB2 receptors.
We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this combination are blocked by these antagonists and hence that they do result from an activation of both CB(1) and CB(2) receptors. In summary, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying signs of disease progression in a proinflammatory model of HD, which adds to previous data obtained in models priming oxidative mechanisms of striatal injury. However, the interest here is that, in contrast Topics: Animals; Cannabidiol; Cannabinoids; Disease Models, Animal; Dronabinol; Drug Combinations; Drug Therapy, Combination; Huntington Disease; Inflammation; Male; Malonates; Phytotherapy; Plant Extracts; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2012 |
Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's disease.
We studied whether combinations of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, provide neuroprotection in rat models of Huntington's disease (HD). We used rats intoxicated with 3-nitropropionate (3NP) that were given combinations of Δ(9)-THC- and CBD-enriched botanical extracts. The issue was also studied in malonate-lesioned rats. The administration of Δ(9)-THC- and CBD-enriched botanical extracts combined in a ratio of 1:1 as in Sativex attenuated 3NP-induced GABA deficiency, loss of Nissl-stained neurons, down-regulation of CB(1) receptor and IGF-1 expression, and up-regulation of calpain expression, whereas it completely reversed the reduction in superoxide dismutase-1 expression. Similar responses were generally found with other combinations of Δ(9)-THC- and CBD-enriched botanical extracts, suggesting that these effects are probably related to the antioxidant and CB(1) and CB(2) receptor-independent properties of both phytocannabinoids. In fact, selective antagonists for both receptor types, i.e., SR141716 and AM630, respectively, were unable to prevent the positive effects on calpain expression caused in 3NP-intoxicated rats by the 1:1 combination of Δ(9)-THC and CBD. Finally, this combination also reversed the up-regulation of proinflammatory markers such as inducible nitric oxide synthase observed in malonate-lesioned rats. In conclusion, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying disease progression in HD, a disorder that is currently poorly managed in the clinic, prompting an urgent need for clinical trials with agents showing positive results in preclinical studies. Topics: Animals; Cannabidiol; Cannabinoids; Caudate Nucleus; Cells, Cultured; Disease Models, Animal; Disease Progression; Dronabinol; Drug Combinations; Huntington Disease; Male; Neostriatum; Neuroprotective Agents; Phytotherapy; Plant Extracts; Putamen; Rats; Rats, Sprague-Dawley | 2011 |