guanylyl-imidodiphosphate and Insulin-Resistance

guanylyl-imidodiphosphate has been researched along with Insulin-Resistance* in 2 studies

Other Studies

2 other study(ies) available for guanylyl-imidodiphosphate and Insulin-Resistance

ArticleYear
[The influence of two-month treatment with bromocryptine on activity of the adenylyl cyclase signaling system in the myocardium and testes of rats with type 2 diabetes mellitus].
    Tsitologiia, 2014, Volume: 56, Issue:12

    One of the common complications of type 2 diabetes mellitus (DM2) are cardiovascular diseases and dysfunctions of the reproductive system, indicating the urgency of developing new approaches to their correction. Last years for the treatment of DM2 began to use bromocryptine (BC), the agonist of type 2 dopamine receptors, which not only restores the energy metabolism, but also prevents the development of cardiovascular diseases. However, the mechanisms and targets of BC action are poorly understood. The purpose of this study was to investigate the effect of BC treatment on functional activity of adenylyl cyclase signaling system (ACSS) in the myocardium and testes of male rats with DM2, which is caused by high-fat diet and treatment with streptozotocin (25 mg/kg). The treatment with BC (60 days, orally at a dose of 0.6 mg/kg once every two days) was started 90 days after the beginning of high-fat diet. Diabetic rats had an increased body weight, elevated triglycerides level, impaired glucose tolerance, and insulin resistance. The treatment with BC resulted in the restoration of glycometabolic indicators and in the improvement of insulin sensitivity. Adenylyl cyclase (AC) stimulating effects of guanylylimidodiphosphate (GppNHp), relaxin, and agonists of β-adrenergic receptors (β3-AR)--isoproterenol and norepinephrine were decreased in the miocardium of the diabetic rats. The corresponding effects of the β-agonists BRL-37344 and CL-316243 was preserved. The inhibitory effect of somatostatin on forskolin-stimulated AC activity was attenuated, while the inhibitory effect of noradrenaline mediated through α2-AR increased. The treatment with BC resulted in the normalization of the adrenergic signaling in the myocardium and partially restoration of AC effects of relaxin and somatostatin. In the testes of diabetic rats, the basal and stimulated by GppNHp, forskolin, human chorionic gonadotropin and pituitary AC-activating polypeptide AC activity were decreased, and the inhibitory effect of somatostatin was attenuated. The changes in testicular ACSS in the case of BC treatment were weakly expressed. Thus, long-term BC treatment restores the functional activity of ACSS in the myocardium and testes of diabetic rats that underlies the therapeutic effect of BC on functions of the cardiovascular and reproductive systems disturbed in DM2 and should be considered when developing strategies for treatment type 2 diabetes and its complications.

    Topics: Adenylyl Cyclases; Administration, Oral; Animals; Blood Glucose; Bromocriptine; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Dioxoles; Dopamine Agonists; Drug Administration Schedule; Ethanolamines; Guanylyl Imidodiphosphate; Humans; Insulin Resistance; Isoproterenol; Male; Myocardium; Norepinephrine; Rats; Rats, Wistar; Relaxin; Signal Transduction; Streptozocin; Testis; Triglycerides

2014
Multiple defects occur in the guanine nucleotide regulatory protein system in liver plasma membranes of obese (fa/fa) but not lean (Fa/Fa) Zucker rats: loss of functional Gi and abnormal Gs function.
    Cellular signalling, 1989, Volume: 1, Issue:1

    Hepatocyte membranes from both lean and obese Zucker rats exhibited adenylate cyclase activity that could be stimulated by glucagon, forskolin, NaF and elevated concentrations of p[NH]ppG. In membranes from lean animals, functional Gi was detected by the ability of low concentrations of p[NH]ppG to inhibit forskolin-activated adenylate cyclase. This activity was abolished by treatment of hepatocytes with either pertussis toxin or the phorbol ester TPA, prior to making membranes for assay of adenylate cyclase activity. In hepatocyte membranes from obese animals no functional Gi activity was detected. Quantitative immunoblotting, using an antibody able to detect the alpha subunit of Gi, showed that hepatocyte plasma membranes from both lean and obese Zucker rats had similar amounts of Gi-alpha subunit. This was 6.2 pmol/mg plasma membrane for lean and 6.5 pmol/mg plasma membrane for obese animals. Using thiol pre-activated pertussis toxin and [32P]-NAD+, similar degrees of labelling of the 40 kDa alpha subunit of Gi were found using plasma membranes of both lean and obese Zucker rats. We suggest that liver plasma membranes from obese Zucker rats express an inactive Gi alpha subunit. Thus lesions in liver Gi functioning are seen in insulin-resistant obese rats and in alloxan- and streptozotocin-induced diabetic rats which also show resistance as regards the acute actions of insulin. Liver plasma membranes of obese animals also showed an impairment in the coupling of glucagon receptors to Gs-controlled adenylate cyclase, with the Kd values for activation by glucagon being 17.3 and 126 nM for lean and obese animals respectively. Membranes from obese animals also showed a reduced ability for high concentration of p[NH]ppG to activate adenylate cyclase. The use of [32P]-NAD+ and thiol-preactivated cholera toxin to label the 43 kDa and 52 kDa forms of the alpha-subunit of Gs showed that a reduced labelling occurred using liver plasma membranes from obese animals. It is suggested that abnormalities in the levels of expression of primarily the 52 kDa form of alpha-Gs may give rise to the abnormal coupling between glucagon receptors and adenylate cyclase in liver membranes from obese (fa/fa) Zucker rats.

    Topics: Adenosine Diphosphate Ribose; Adenylate Cyclase Toxin; Adenylyl Cyclases; Animals; Blotting, Western; Cell Membrane; Cholera Toxin; Colforsin; Diabetes Mellitus, Experimental; Glucagon; GTP-Binding Proteins; Guanylyl Imidodiphosphate; Insulin Resistance; Liver; Male; NAD; Obesity; Pertussis Toxin; Phosphorus Radioisotopes; Rats; Rats, Inbred Strains; Rats, Zucker; Receptors, Gastrointestinal Hormone; Receptors, Glucagon; Virulence Factors, Bordetella

1989