guanosine-triphosphate and Triple-Negative-Breast-Neoplasms

guanosine-triphosphate has been researched along with Triple-Negative-Breast-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for guanosine-triphosphate and Triple-Negative-Breast-Neoplasms

ArticleYear
Matrix metalloproteinase 2 is a target of the RAN-GTP pathway and mediates migration, invasion and metastasis in human breast cancer.
    Life sciences, 2022, Dec-01, Volume: 310

    RAS-related nuclear protein(RAN) is a nuclear shuttle and normally regulates events in the cell cycle. When overexpressed in cultured cells, it causes increases in cell migration/invasion in vitro and its overexpression is associated with early breast cancer patient deaths in vivo. However, the underlying mechanism is unknown. The effect of RAN overexpression on potential targets MMP2, ATF3, CXCR3 was investigated by Real-Time PCR/Western blots in the triple receptor negative breast cancer(TRNBC) cell line MDA-MB231 and consequent biological effects were measured by cell adhesion, cell migration and cell invasion assays. Results showed that knockdown of RAN lead to a reduction of MMP2 and its potential regulators ATF3 and CXCR3. Moreover, knockdown of ATF3 or CXCR3 downregulated MMP2 without affecting RAN, indicating that RAN regulates MMP2 through ATF3 and CXCR3. Knockdown of RAN and MMP2 reduced cell adhesion, cell migration and cell growth in agar, whilst overexpression of MMP2 reversed the knockdown of RAN. Furthermore, immunohistochemical staining for RAN and MMP2 are positively associated with each other in the same tumour and separately with patient survival times in breast cancer specimens, suggesting that a high level of RAN may be a pre-requisite for MMP2 overexpression and metastasis. Moreover, positive immunohistochemical staining for both RAN and MMP-2 reduces further patient survival times over that for either protein separately. Our results suggest that MMP2 expression can stratify progression of breast cancers with a high and low incidence of RAN, both RAN and MMP2 in combination can be used for a more accurate patient prognosis. SIMPLE SUMMARY: Ran is an important regulator of normal cell growth and behaviour. We have established in cell line models of breast cancer (BC) a molecular pathway between RAN and its protein-degrading effector MMP-2 and properties related to metastasis in culture. Using immunohistochemistry (IHC) staining of primary BCs, we have shown that RAN and MMP-2 are on their own significantly associated with patient demise from metastatic BC. Moreover, when staining for MMP-2 is added to that for RAN in the primary tumours, there is a significant decrease in patient survival time over that for either protein alone. Thus a combination of staining for RAN and MMP2 is an excellent marker for poor prognosis in breast cancer.

    Topics: Breast Neoplasms; Cell Line, Tumor; Cell Movement; Female; Gene Expression Regulation, Neoplastic; Guanosine Triphosphate; Humans; Matrix Metalloproteinase 2; Neoplasm Invasiveness; ran GTP-Binding Protein; Triple Negative Breast Neoplasms

2022
AVA-NP-695 Selectively Inhibits ENPP1 to Activate STING Pathway and Abrogate Tumor Metastasis in 4T1 Breast Cancer Syngeneic Mouse Model.
    Molecules (Basel, Switzerland), 2022, Oct-09, Volume: 27, Issue:19

    Cyclic GMP-AMP synthase (cGAS) is an endogenous DNA sensor that synthesizes cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP) from ATP and GTP. 2'3'-cGAMP activates the stimulator of interferon genes (STING) pathway, resulting in the production of interferons and pro-inflammatory cytokines. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the phosphodiesterase that negatively regulates the STING pathway by hydrolyzing 2'3'-cGAMP. It has been established that the cGAS-STING pathway plays a major role in inhibiting tumor growth by upregulating T cell response. Herein, we demonstrate that AVA-NP-695, a selective and highly potent ENPP1 inhibitor, apart from the immunomodulatory effect also modulates cancer metastasis by negatively regulating epithelial-mesenchymal transition (EMT). We established that the combined addition of 2'3'-cGAMP and AVA-NP-695 significantly abrogated the transforming growth factor beta (TGF-ꞵ)-induced EMT in MDA-MB-231 cells. Finally, results from the in vivo study showed superior tumor growth inhibition and impact on tumor metastasis of AVA-NP-695 compared to Olaparib and PD-1 in a syngeneic 4T1 breast cancer mouse model. The translation of efficacy from in vitro to in vivo 4T1 tumor model provides a strong rationale for the therapeutic potential of AVA-NP-695 against triple-negative breast cancer (TNBC) as an immunomodulatory and anti-metastatic agent.

    Topics: Adenosine Triphosphate; Animals; DNA; Guanosine Triphosphate; Humans; Interferons; Membrane Proteins; Mice; Nucleotidyltransferases; Phosphoric Diester Hydrolases; Programmed Cell Death 1 Receptor; Pyrophosphatases; Transforming Growth Factor beta; Triple Negative Breast Neoplasms

2022