guanosine-triphosphate and Subarachnoid-Hemorrhage

guanosine-triphosphate has been researched along with Subarachnoid-Hemorrhage* in 3 studies

Other Studies

3 other study(ies) available for guanosine-triphosphate and Subarachnoid-Hemorrhage

ArticleYear
Roles of Rufy3 in experimental subarachnoid hemorrhage-induced early brain injury via accelerating neuronal axon repair and synaptic plasticity.
    Molecular brain, 2022, 04-23, Volume: 15, Issue:1

    RUN and FYVE domain-containing 3 (Rufy3) is a well-known adapter protein of a small GTPase protein family and is bound to the activated Ras family protein to maintain neuronal polarity. However, in experimental subarachnoid hemorrhage (SAH), the role of Rufy3 has not been investigated. Consequently, we aimed to investigate the potential role of Rufy3 in an in vivo model of SAH-induced early brain injury (EBI). In addition, we investigated the relevant brain-protective mechanisms. Oxyhemoglobin (OxyHb) stimulation of cultured primary neurons simulated vitro SAH condition. The SAH rat model was induced by infusing autologous blood into the optic chiasma pool and treating the rats with lentivirus-negative control 1 (LV-NC1), lentivirus-Rufy3 shRNA (LV-shRNA), lentivirus-negative control 2 (LV-NC2), lentivirus-Rufy3 (LV-Rufy3), or 8-pCPT-2'-O-Me-cAMP (8p-CPT) (Rap1 agonist). In experiment one, we found that the protein level of Rufy3 decreased and neuronal axon injury in the injured neurons but was rectified by LV-Rufy3 treatment. In experiment two, mRNA and protein levels of Rufy3 were downregulated in brain tissue and reached the lowest level at 24 h after SAH. In addition, the expression of Myelin Basic Protein was downregulated and that of anti-hypophosphorylated neurofilament H (N52) was upregulated after SAH. In experiments three and four, Rufy3 overexpression (LV-Rufy3) increased the interactions between Rufy3 and Rap1, the level of Rap1-GTP, and the ratio of Rap1-GTP/total GTP. In addition, LV-Rufy3 treatment inhibited axon injury and accelerated axon repair by activating the Rap1/Arap3/Rho/Fascin signaling pathway accompanied by upregulated protein expression levels of ARAP3, Rho, Fascin, and Facin. LV-Rufy3 also enhanced synaptic plasticity by activating the Rap1/MEK/ERK/synapsin I signaling pathway accompanied by upregulated protein expression levels of ERK1, p-ERK1, MEK1, p-MEK1, synaspin I, and p-synaspin I. Moreover, LV-Rufy3 also alleviated brain damage indicators, including cortical neuronal cell apoptosis and degeneration, brain edema, and cognitive impairment after SAH. However, the downregulation of Rufy3 had the opposite effect and aggravated EBI induced by SAH. Notably, the combined application of LV-Rufy3 and 8p-CPT showed a significant synergistic effect on the aforementioned parameters. Our findings suggest that enhanced Rufy3 expression may reduce EBI by inhibiting axon injury and promoting neuronal axon repair and synaptic plasticity

    Topics: Animals; Apoptosis; Axons; Brain Injuries; Guanosine Triphosphate; Neuronal Plasticity; Neurons; Rats; RNA, Small Interfering; Subarachnoid Hemorrhage

2022
Temporal profile and significance of metabolic failure and trophic changes in the canine cerebral arteries during chronic vasospasm after subarachnoid hemorrhage.
    Journal of neurosurgery, 1993, Volume: 78, Issue:5

    To investigate the pathogenetic significance of metabolic failure observed in spastic cerebral arteries after subarachnoid hemorrhage (SAH), the temporal profile of alterations in the arterial content of high-energy phosphates was studied. A canine model of double hemorrhage was used. Constriction of the basilar artery was measured angiographically on Days 3, 5, 7, and 14 after SAH in separate groups of animals. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), guanosine diphosphate, creatine phosphate (CrP), and creatine (Cr) levels in the arteries were assayed using high-performance liquid chromatography. A time-dependent development of angiographic spasm was confirmed. A mild vasospasm was seen in the group studied 3 days after SAH, progressed in the Day 5 group, remained comparably severe in the Day 7 group, and resolved partially in the Day 14 group. The content of high-energy phosphates (ATP, GTP, and CrP) declined rapidly over the course of the study, and a significant reduction in ATP, GTP, and CrP was observed in the Day 3 group. Levels of ATP and CrP decreased further in the Day 5 and 7 groups. The decrement in GTP was completed in the early phase; a significant reduction took place in the Day 3 group, with no progression thereafter and no recovery through Day 14. Total adenylate (ATP + ADP + AMP) and total creatine (Cr + CrP) content diminished markedly over the course of the study. These results indicate that metabolic failure and trophic disturbance in the cerebral artery occurs with a rapid onset following SAH and progresses in close association with the development of vasospasm, suggesting a significant causal relationship with the pathogenesis.

    Topics: Adenosine Triphosphate; Animals; Cerebral Arteries; Creatine; Dogs; Energy Metabolism; Guanosine Triphosphate; Ischemic Attack, Transient; Phosphocreatine; Subarachnoid Hemorrhage

1993
High-energy phosphate levels in the cerebral artery during chronic vasospasm after subarachnoid hemorrhage.
    Journal of neurosurgery, 1992, Volume: 76, Issue:6

    High-energy phosphate levels were measured in the canine cerebral artery during chronic vasospasm. Subarachnoid hemorrhage and vasospasm were induced by percutaneous injections of autologous venous blood into the cisterna magna. Narrowing of the artery was confirmed by angiography 7 days later. Levels of adenosine phosphates (adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP)), guanosine phosphates (guanosine triphosphate (GTP) and guanosine diphosphate (GDP)), and creatine phosphate (CrP) in the basilar artery were quantified using high-performance liquid chromatography. The total creatine (Crtotal) content was measured by a spectrophotometric method after acid hydrolysis of CrP. Levels of ATP, GTP, and CrP were markedly reduced in the spastic arteries, and ratios of ATP:ADP, GTP:GDP, and CrP:Crtotal were significantly decreased. The results indicate a serious disturbance in the energy metabolism that takes place in the cerebral artery during chronic vasospasm.

    Topics: Adenosine Diphosphate; Adenosine Monophosphate; Adenosine Triphosphate; Animals; Cerebral Arteries; Chronic Disease; Dogs; Female; Guanosine Diphosphate; Guanosine Triphosphate; Ischemic Attack, Transient; Male; Phosphates; Phosphocreatine; Subarachnoid Hemorrhage

1992