guanosine-triphosphate has been researched along with Pancreatic-Neoplasms* in 15 studies
1 trial(s) available for guanosine-triphosphate and Pancreatic-Neoplasms
Article | Year |
---|---|
A preclinical and clinical study of mycophenolate mofetil in pancreatic cancer.
A high throughput screening for anticancer activity of FDA approved drugs identified mycophenolic acid (MPA), an inhibitor of inositol monophosphate dehydrogenase (IMPDH) as an active agent with an antiangiogenesis mode of action. Exposure of pancreatic cancer cell lines to MPA resulted in growth inhibition and reduced the expression of VEGF that was reversed by supplementing the media with guanosine supporting and IMPDH-dependant mechanism. In preclinical in vivo study, MPA showed a moderate inhibition of tumor growth in a panel of 6 human derived pancreatic cancer xenografts but reduced the expression of VEGF. To investigate the effects of MPA in human pancreatic cancer, a total of 12 patients with resectable pancreatic cancer (PDA) received increasing doses of mycophenolate mofetil (MMF) in cohorts of 6 patients each from 5-15 days prior to surgical resection. Treatment was well tolerated with one episode of grade 1 muscle pain, one episode of grade 2 lymphopenia (2 gr/day dose) and one episode of grade 2 elevantion in LFT (all in the 2 gr./day dose). Patients recovered from surgery uneventfully with no increased post-operative complications. Assessment of CD31, VEGF, and TUNEL in resected specimens compared to a non treated control of 6 patients showed no significant variations in any of the study endpoints. In conclusion, this study shows the feasibility of translating a preclinical observation to the clinical setting and to explore a drug mechanism of action in patients. MPA, however, did not show any hints of antiangiogenesis of anticancer clinical activity questioning if this agent should be further developed in PDA. Topics: Aged; Animals; Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Female; Guanosine Triphosphate; Humans; Immunosuppressive Agents; Male; Mice; Middle Aged; Mycophenolic Acid; Pancreatic Neoplasms; Treatment Outcome; Tumor Burden; Xenograft Model Antitumor Assays | 2013 |
14 other study(ies) available for guanosine-triphosphate and Pancreatic-Neoplasms
Article | Year |
---|---|
PPDPF Promotes the Development of Mutant KRAS-Driven Pancreatic Ductal Adenocarcinoma by Regulating the GEF Activity of SOS1.
The guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRAS Topics: Animals; Carcinoma, Pancreatic Ductal; Guanine Nucleotide Exchange Factors; Guanosine Triphosphate; Intracellular Signaling Peptides and Proteins; Mice; Pancreatic Neoplasms; Proto-Oncogene Proteins p21(ras); SOS1 Protein | 2023 |
Removing physiological motion from intravital and clinical functional imaging data.
Intravital microscopy can provide unique insights into the function of biological processes in a native context. However, physiological motion caused by peristalsis, respiration and the heartbeat can present a significant challenge, particularly for functional readouts such as fluorescence lifetime imaging (FLIM), which require longer acquisition times to obtain a quantitative readout. Here, we present and benchmark Topics: Algorithms; Animals; Biosensing Techniques; Cell Adhesion; Computer Simulation; Fluorescence Resonance Energy Transfer; Guanosine Triphosphate; Humans; Imaging, Three-Dimensional; Intestines; Intravital Microscopy; Mice; Microscopy, Fluorescence; Models, Biological; Motion; Neoplasm Metastasis; Neuropeptides; Pancreatic Neoplasms; rac1 GTP-Binding Protein; Skin; Software; src-Family Kinases | 2018 |
Rac1b negatively regulates TGF-β1-induced cell motility in pancreatic ductal epithelial cells by suppressing Smad signalling.
Transforming growth factor (TGF)-β1 promotes progression of pancreatic ductal adenocarcinoma (PDAC) by enhancing epithelial-mesenchymal transition, cell migration/invasion, and metastasis, in part by cooperating with the small GTPase Rac1. Prompted by the observation of higher expression of Rac1b, an alternatively spliced Rac1 isoform, in pancreatic ductal epithelial cells and in patients with chronic pancreatitis vs. PDAC, as well as in long-time vs. short-time survivors among PDAC patients, we asked whether Rac1b might negatively affect TGF-β1 prometastatic function. Interestingly, the non-malignant pancreatic ductal epithelial cell line H6c7 exhibited a higher ratio of active Rac1b to total Rac1b than the TGF-β1-responsive PDAC cell lines Panc-1 and Colo357. Notably, siRNA-mediated silencing of Rac1b increased TGF-β1/Smad-dependent migratory activities in H6c7, Colo357, and Panc-1 cells, while ectopic overexpression of Rac1b in Panc-1 cells attenuated TGF-β1-induced cell motility. Depletion of Rac1b in Panc-1 cells enhanced TGF-β1/Smad-dependent expression of promoter-reporter genes and of the endogenous Slug gene. Moreover, Rac1b depletion resulted in a higher and more sustained C-terminal phosphorylation of Smad3 and Smad2, suggesting that Rac1b is involved in Smad2/3 dephosphorylation/inactivation. Since pharmacologic or siRNA-mediated inhibition of Smad3 but not Smad2 was able to alleviate the Rac1b siRNA effect on TGF-β1-induced cell migration, our results suggests that Rac1b inhibits TGF-β1-induced cell motility in pancreatic ductal epithelial cells by blocking the function of Smad3. Moreover, Rac1b may act as an endogenous inhibitor of Rac1 in TGF-β1-mediated migration and possibly metastasis. Hence, it could be exploited for diagnostic/prognostic purposes or even therapeutically in late-stage PDAC as an antimetastatic agent. Topics: Carcinoma, Pancreatic Ductal; Cell Line, Tumor; Cell Movement; Epithelial Cells; Epithelial-Mesenchymal Transition; Guanosine Triphosphate; Humans; Pancreatic Ducts; Pancreatic Neoplasms; Phosphorylation; rac1 GTP-Binding Protein; Signal Transduction; Smad2 Protein; Smad3 Protein; Transfection; Transforming Growth Factor beta1 | 2014 |
Activation of RalA is critical for Ras-induced tumorigenesis of human cells.
RalGEFs were recently shown to be critical for Ras-mediated transformed and tumorigenic growth of human cells. We now show that the oncogenic activity of these proteins is propagated by activation of one RalGEF substrate, RalA, but blunted by another closely related substrate, RalB, and that the oncogenic signaling requires binding of the RalBP1 and exocyst subunit effector proteins. Knockdown of RalA expression impeded, if not abolished, the ability of human cancer cells to form tumors. RalA was also commonly activated in a panel of cell lines from pancreatic cancers, a disease characterized by activation of Ras. Activation of RalA signaling thus appears to be a critical step in Ras-induced transformation and tumorigenesis of human cells. Topics: Animals; ATP-Binding Cassette Transporters; Carrier Proteins; Cell Line; Cell Line, Tumor; Cell Proliferation; Cell Transformation, Neoplastic; Gene Expression; GTPase-Activating Proteins; Guanosine Triphosphate; Humans; Mice; Mice, SCID; Neoplasm Transplantation; Neoplasms; Pancreatic Neoplasms; Protein Binding; Protein Transport; Proto-Oncogene Proteins p21(ras); ral GTP-Binding Proteins; ral Guanine Nucleotide Exchange Factor; rho GTP-Binding Proteins; RNA, Small Interfering; Transfection; Vesicular Transport Proteins | 2005 |
Glucose metabolites inhibit protein phosphatases and directly promote insulin exocytosis in pancreatic beta-cells.
In human type 2 diabetes mellitus, loss of glucose-sensitive insulin secretion is an early pathogenetic event. Glucose is the cardinal physiological stimulator of insulin secretion from the pancreatic beta-cell, but the mechanisms involved in glucose sensing are not fully understood. Specific ser/thr protein phosphatase (PPase) inactivation by okadaic acid promotes Ca(2+) entry and insulin exocytosis in the beta-cell. We now show that glycolytic and Krebs cycle intermediates, whose concentrations increase upon glucose stimulation, not only dose dependently inhibit ser/thr PPase enzymatic activities, but also directly promote insulin exocytosis from permeabilized beta-cells. Thus, fructose-1,6-bisphosphate, phosphoenolpyruvate, 3-phosphoglycerate, citrate, and oxaloacetate inhibit PPases and significantly enhance insulin exocytosis, nonadditive to that of okadaic acid, at micromolar Ca2+ concentrations. In contrast, the effect of GTP is potentiated by okadaic acid, suggesting that the action of GTP does not require PPase inactivation. We conclude that specific glucose metabolites and GTP inhibit beta-cell PPase activities and directly stimulate Ca2+-independent insulin exocytosis. The glucose metabolites, but not GTP, seem to require PPase inactivation for their stimulatory effect on exocytosis. Thus, an increase in phosphorylation state, through inhibition of protein dephosphorylation by metabolic intermediates, may be a novel regulatory mechanism linking glucose sensing to insulin exocytosis in the beta-cell. Topics: Animals; Calcium; Citric Acid; Drug Synergism; Enzyme Inhibitors; Exocytosis; Fructosediphosphates; Glucose; Glyceric Acids; Guanosine Triphosphate; Insulin; Insulinoma; Islets of Langerhans; Okadaic Acid; Oxaloacetic Acid; Pancreatic Neoplasms; Phosphoenolpyruvate; Phosphoprotein Phosphatases; Phosphorylation; Rats; Tumor Cells, Cultured | 2002 |
Unregulated elevation of glutamate dehydrogenase activity induces glutamine-stimulated insulin secretion: identification and characterization of a GLUD1 gene mutation and insulin secretion studies with MIN6 cells overexpressing the mutant glutamate dehydr
Glutamate dehydrogenase (GDH) is important in normal glucose homeostasis. Mutations of GDH result in hyperinsulinism/hyperammonemia syndrome. Using PCR/single-strand conformation polymorphism analysis of the gene encoding GDH in 12 Japanese patients with persistent hyperinsulinemic hypoglycemia of infancy (PHHI), we found a mutation (Y266C) in one PHHI patient. This mutation was not found in any of the control or type 2 diabetic subjects. The activity of the mutant GDH (GDH266C), expressed in COS-7 cells, was constitutively elevated, and allosteric regulations by ADP and GTP were severely impaired. The effect of the unregulated increase in GDH activity on insulin secretion was examined by overexpressing GDH266C in an insulinoma cell line, MIN6. Although glutamine alone did not stimulate insulin secretion from control MIN6-lacZ, it remarkably stimulated insulin secretion from MIN6-GDH266C. This finding suggests that constitutively activated GDH enhances oxidation of glutamate, which is intracellularly converted from glutamine to alpha-ketoglutarate, a tricarboxylic acid cycle substrate, which thereby stimulates insulin secretion. Interestingly, insulin secretion is also exaggerated significantly at low glucose concentrations (2 and 5 mmol/l) but not at higher glucose concentrations (8--25 mmol/l). Our results directly illustrate the importance of GDH in the regulation of insulin secretion from pancreatic beta-cells. Topics: Adenosine Diphosphate; Animals; Blood Glucose; COS Cells; DNA Mutational Analysis; Female; Glucose; Glutamate Dehydrogenase; Glutamine; Guanosine Triphosphate; Humans; Hyperinsulinism; Hypoglycemia; Infant; Insulin; Insulin Secretion; Insulinoma; Islets of Langerhans; Mutation; Pancreatic Neoplasms; Polymerase Chain Reaction; Polymorphism, Single-Stranded Conformational; Transfection; Tumor Cells, Cultured | 2002 |
Radiosensitization of pancreatic cancer cells by 2',2'-difluoro-2'-deoxycytidine.
We have reported that the deoxycytidine analog 2',2'difluoro-2'-deoxycytidine (dFdCyd) is a potent radiosensitizer of HT29 human colon cancer cells probably through its effects on intracellular deoxyribonucleotide (dNTP) pools. Because dFdCyd has activity against pancreatic cancer in clinical trials, we wished to determine if dFdCyd would radiosensitize human pancreatic cancer cells.. We assessed the effect of dFdCyd on radiation sensitivity of two human pancreatic cancer cell lines, Panc-1 and BxPC-3. To begin to investigate the mechanism of sensitization, we determined the effect of dFdCyd on dNTP pools and cell cycle distribution.. We found that dFdCyd produced radiation enhancement ratios of 1.7-1.8 under noncytotoxic conditions in both cell lines. Sensitization was not associated with intracellular levels of 2',2'-difluoro-2'-deoxycytidine triphosphate, the cytotoxic metabolite of dFdCyd, but occurred when dATP pools were depleted below the level of approximately 1 micromolar. Although both cell lines showed substantial cell cycle redistribution after drug treatment, the flow cytogram of the BxPC-3 cells would not, by itself, be anticipated to result in increased radiation sensitivity.. These findings demonstrate that dFdCyd is a potent radiation sensitizer of human pancreatic cancer cells and support the development of a clinical protocol using combined dFdCyd and radiation therapy in the treatment of pancreatic cancer. Topics: Adenosine Triphosphate; Cell Cycle; Cell Survival; Cytidine Triphosphate; Deoxycytidine; Drug Screening Assays, Antitumor; Gemcitabine; Guanosine Triphosphate; Humans; Pancreatic Neoplasms; Radiation-Sensitizing Agents; Thymine Nucleotides; Tumor Cells, Cultured | 1996 |
Glucose- and GTP-dependent stimulation of the carboxyl methylation of CDC42 in rodent and human pancreatic islets and pure beta cells. Evidence for an essential role of GTP-binding proteins in nutrient-induced insulin secretion.
Several GTP-binding proteins (G-proteins) undergo post-translational modifications (isoprenylation and carboxyl methylation) in pancreatic beta cells. Herein, two of these were identified as CDC42 and rap 1, using Western blotting and immunoprecipitation. Confocal microscopic data indicated that CDC42 is localized only in islet endocrine cells but not in acinar cells of the pancreas. CDC42 undergoes a guanine nucleotide-specific membrane association and carboxyl methylation in normal rat islets, human islets, and pure beta (HIT or INS-1) cells. GTPgammaS-dependent carboxyl methylation of a 23-kD protein was also demonstrable in secretory granule fractions from normal islets or beta cells. AFC (a specific inhibitor of prenyl-cysteine carboxyl methyl transferases) blocked the carboxyl methylation of CDC42 in five types of insulin-secreting cells, without blocking GTPgammaS-induced translocation, implying that methylation is a consequence (not a cause) of transfer to membrane sites. High glucose (but not a depolarizing concentration of K+) induced the carboxyl methylation of CDC42 in intact cells, as assessed after specific immunoprecipitation. This effect was abrogated by GTP depletion using mycophenolic acid and was restored upon GTP repletion by coprovision of guanosine. In contrast, although rap 1 was also carboxyl methylated, it was not translocated to the particulate fraction by GTPgammaS; furthermore, its methylation was also stimulated by 40 mM K+ (suggesting a role which is not specific to nutrient stimulation). AFC also impeded nutrient-induced (but not K+-induced) insulin secretion from islets and beta cells under static or perifusion conditions, whereas an inactive structural analogue of AFC failed to inhibit insulin release. These effects were reproduced not only by S-adenosylhomocysteine (another methylation inhibitor), but also by GTP depletion. Thus, the glucose- and GTP-dependent carboxyl methylation of G-proteins such as CDC42 is an obligate step in the stimulus-secretion coupling of nutrient-induced insulin secretion, but not in the exocytotic event itself. Furthermore, AFC blocked glucose-activated phosphoinositide turnover, which may provide a partial biochemical explanation for its effect on secretion, and implies that certain G-proteins must be carboxyl methylated for their interaction with signaling effector molecules, a step which can be regulated by intracellular availability of GTP. Topics: Acetylcysteine; Animals; Blotting, Western; cdc42 GTP-Binding Protein; Cell Cycle Proteins; Cell Line; Cells, Cultured; Enzyme Inhibitors; Glucose; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Triphosphate; Humans; Insulin; Insulin Secretion; Insulinoma; Islets of Langerhans; Kinetics; Male; Methylation; Pancreatic Neoplasms; Potassium; Protein Methyltransferases; Rats; Rats, Sprague-Dawley | 1996 |
Phytohemagglutinin-L (PHA-L) lectin surface binding of N-linked beta 1-6 carbohydrate and its relationship to activated mutant ras in human pancreatic cancer cell lines.
Alterations of the N-linked carbohydrate core structure of cell surface glycoproteins (beta 1-6 branching) can be detected by phytohemagglutinin (PHA-L) lectin binding and has been linked to tumor progression and K-ras activation in colon cancer. The purpose of this study was to determine the prevalence of this carbohydrate alteration and its relationship to K-ras activation in pancreatic cancer. Nine human pancreatic cancer cell lines and 4 colon lines as controls were grown under standard tissue culture conditions. K-ras genome analysis was performed by polymerase chain reaction amplification and sequencing. The proportion of cellular p21-ras bound to GTP (ras-GTP level) was determined using immunoprecipitation of 32P-labeled cell lysates followed by thin layer chromatography and phosphoimaging analysis. Lectin blot analysis was performed on crude membrane preparations. Sensitivity to lectins was assessed with cell culture thymidine incorporation. Of 9 pancreatic cancer lines tested, 3 had wild type K-ras, 2 had heterozygous and 4 had homozygous mutations in codon 12 of K-ras. These genotypes correlated strongly with the level of ras-GTP measured. K-ras mutants had increased levels of ras-GTP compared to wild-type cell lines. PHA-L binding to cell membranes correlated positively with ras-GTP levels in 7 out of 9 cell lines. PHA-L toxicity was greatest in cells with positive PHA-L reactivity on Western blotting. A positive correlation between the presence of K-ras mutation, increased ras-GTP level, and increased cell surface beta 1-6 N-linked carbohydrate exists in pancreatic cancer cell lines. Topics: Concanavalin A; Genes, ras; Guanosine Triphosphate; Humans; Membrane Glycoproteins; Mutation; Oncogene Protein p21(ras); Pancreatic Neoplasms; Phytohemagglutinins; Tumor Cells, Cultured | 1996 |
Characterization of specific calcitonin gene-related peptide receptors present in hamster pancreatic beta cells.
Calcitonin gene-related peptide (CGRP) shares about 46% and 20% amino acid sequence homology with islet amyloid polypeptide (IAPP) and salmon calcitonin (sCT). We investigated whether these related peptides could cross-react with the specific binding of 125I-[His]hCGRP I to the CGRP receptor in hamster insulinoma cell membranes. A rapid dissociation of membrane bound 125I-[His]hCGRP I could be induced in the presence of 1 microM chicken CGRP (cCGRP). The specific 125I-[His]hCGRP I binding was inhibited by the related peptides and their half-maximal inhibitory concentrations (IC50) were: cCGRP (0.1 nM), rat CGRP I and human CGRP I and II (1.0-2.0 nM), fragment of hCGRP I (8-37) (150 nM), human IAPP (440 nM). The non-amidated form of hIAPP; human diabetes-associated peptide (hDAP) did not inhibit the binding of 125I-[His]hCGRP I and sCT was only effective at a high concentration (1 microM). Binding of 125I-[His]hCGRP I was dose dependently inhibited by guanosine-5'-O-(3-thiotriphosphate) or (GTP gamma S) and a 70% reduction of binding was obtained with 0.1 mM GTP gamma S. The IC50 value of cCGRP (0.1 nM) was increased 100-fold in the presence of 0.1 mM GTP gamma S. Human CGRP I and cCGRP at 2.5 microM did not stimulate the activity of hamster insulinoma cell membranes adenylate cyclase, while glucagon (1 microM) induced a 2-fold increase. Thus, specific CGRP receptors present in hamster beta cells are associated with G protein (s) and IAPP can interact with these receptors. These results and the observation that cCGRP and hCGRP I did not influence adenylate cyclase activity provide further evidence for CGRP receptor subtypes. Topics: Adenosine Triphosphate; Amyloid; Animals; Binding, Competitive; Calcitonin; Calcitonin Gene-Related Peptide; Cell Membrane; Chickens; Cricetinae; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Triphosphate; Humans; Insulinoma; Islet Amyloid Polypeptide; Islets of Langerhans; Kinetics; Pancreatic Neoplasms; Rats; Receptors, Calcitonin Gene-Related Peptide | 1993 |
Synergistic action of taxol and tiazofurin in human ovarian, pancreatic and lung carcinoma cells.
Since taxol (NSC 125975) and tiazofurin (NSC 286193) attack at two different sites in microtubular synthetic processes, we tested the rationale that the two drugs might be synergistic in human ovarian (OVCAR-5), pancreatic (PANC-1) and lung carcinoma (H-125) cells and in rat hepatoma 3924A cells. In human OVCAR-5, PANC-1, H-125 and rat 3924A cells, for taxol the anti-proliferative IC50 was 0.05, 0.06, 0.03 and 0.04 microM, respectively; for tiazofurin IC50 = 8.3, 2.3, 1.8 and 6.9 microM. Thus, the concentrations for taxol required for IC50 for inhibiting cell proliferation were 166-, 38-, 60- and 173-fold lower than those for tiazofurin. Taxol and tiazofurin proved synergistic in all four cell lines tested. The synergism of taxol with tiazofurin should have implications in the clinical treatment of human solid tumors with particular relevance to ovarian, pancreatic, lung and hepatocellular carcinomas. Topics: Animals; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Carcinoma; Carcinoma, Adenosquamous; Cell Division; Drug Screening Assays, Antitumor; Drug Synergism; Female; Guanosine Diphosphate; Guanosine Triphosphate; Humans; Liver Neoplasms, Experimental; Lung Neoplasms; Ovarian Neoplasms; Paclitaxel; Pancreatic Neoplasms; Rats; Ribavirin; Spindle Apparatus; Tumor Cells, Cultured | 1993 |
Solubilization of somatostatin receptors in hamster pancreatic beta cells. Characterization as a glycoprotein interacting with a GTP-binding protein.
Somatostatin receptors of plasma membranes from beta cells of hamster insulinoma were covalently labelled with 125I-[Leu8,D-Trp22,Tyr25]somatostatin-28 (125I-somatostatin-28) and solubilized with the non-denaturing detergent Triton X-100. Analysis by SDS/PAGE and autoradiography revealed three specific 125I-somatostatin-28 receptor complexes with similar molecular masses (228 kDa, 128 kDa and 45 kDa) to those previously identified [Cotroneo, P., Marie, J.-C. & Rosselin, G. (1988) Eur. J. Biochem. 174, 219-224]. The major labelled complex (128 kDa) was adsorbed to a wheat-germ-agglutinin agarose column and eluted by N-acetylglucosamine. Also, the binding of 125I-somatostatin-28 to plasma membranes was specifically inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate) (GTP[S]) in a dose-dependent manner. Furthermore, when somatostatin-28 receptors were solubilized by Triton X-100 as a reversible complex with 125I-somatostatin-28, GTP[S] specifically dissociated the bound ligand to a larger extent from the soluble receptors than from the plasma-membrane-embedded receptors, the radioactivity remaining bound after 15 min at 37 degrees C being 30% and 83% respectively. After pertussis-toxin-induced [32P]ADP-ribosylation of pancreatic membranes, a 41-kDa [32P]ADP-ribose-labelled inhibitory guanine nucleotide binding protein coeluted with the 128-kDa and 45-kDa receptor complexes. The labelling of both receptor proteins was sensitive to GTP[S]. The labelling of the 228-kDa band was inconsistent. These results support the conclusion that beta cell somatostatin receptors can be solubilized as proteins of 128 kDa and 45 kDa. The major labeled species corresponds to the 128-kDa band and is a glycoprotein. The pancreatic membrane contains a 41-kDa GTP-binding protein that can complex with somatostatin receptors. Topics: Animals; Cells, Cultured; Chromatography, Gel; Cricetinae; Electrophoresis, Polyacrylamide Gel; Guanosine Triphosphate; Insulinoma; Iodine Radioisotopes; Islets of Langerhans; Pancreatic Neoplasms; Receptors, Neurotransmitter; Receptors, Somatostatin; Solubility; Somatostatin; Somatostatin-28 | 1989 |
CCK and gastrin inhibit adenylate cyclase activity through a pertussis toxin-sensitive mechanism in the tumoral rat pancreatic acinar cell line AR 4-2J.
(Thr28,Nle31)CCK(23-33) (CCK-9) and gastrin(1-17)I (gastrin) inhibited adenylate cyclase activity in membranes from the tumoral rat pancreatic acinar cell line AR 4-2J through a Bordetella pertussis toxin-sensitive mechanism. This contrasted with the stimulatory effect exerted by CCK-9 on adenylate cyclase activity in membranes from normal rat pancreas. The relative potency of CCK-9, gastrin, and related peptides in inhibiting adenylate cyclase, when confronted with previous evidence, suggests that 'non-selective CCK-gastrin CCK-B receptors' predominating over 'selective CCK-A receptors' in the AR 4-2J cell line, favored the coupling of the first receptors to adenylate cyclase through Gi, while CCK-A receptors capable of stimulating the enzyme through Gs were detected only after Bordetella pertussis toxin pretreatment. Topics: Adenylate Cyclase Toxin; Adenylyl Cyclase Inhibitors; Animals; Cell Membrane; Cholecystokinin; Gastrins; Guanosine Triphosphate; Pancreas; Pancreatic Neoplasms; Pentagastrin; Peptide Fragments; Pertussis Toxin; Rats; Secretin; Tetragastrin; Tumor Cells, Cultured; Vasoactive Intestinal Peptide; Virulence Factors, Bordetella | 1988 |
Phospholipase C activation via a GTP-binding protein in tumoral islet cells stimulated by carbamylcholine.
Carbamylcholine and GTP act synergistically in stimulating the production of [3H]inositol-1-phosphate by digitonized tumoral islet cells (RINm5F line) prelabeled with myo-[2-3H(N)]inositol. The response to these two agents is similar to that evoked by GTP gamma S. These findings suggest that a GTP-binding regulatory protein couples the occupancy of muscarinic receptors to activation of phospholipase C in pancreatic islet cells. Topics: Adenoma, Islet Cell; Carbachol; Cell Line; Enzyme Activation; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Triphosphate; Inositol Phosphates; Pancreatic Neoplasms; Thionucleotides; Type C Phospholipases | 1987 |