guanosine-triphosphate and Optic-Atrophy

guanosine-triphosphate has been researched along with Optic-Atrophy* in 2 studies

Other Studies

2 other study(ies) available for guanosine-triphosphate and Optic-Atrophy

ArticleYear
Warburg Micro syndrome is caused by RAB18 deficiency or dysregulation.
    Open biology, 2015, Volume: 5, Issue:6

    RAB18, RAB3GAP1, RAB3GAP2 and TBC1D20 are each mutated in Warburg Micro syndrome, a rare autosomal recessive multisystem disorder. RAB3GAP1 and RAB3GAP2 form a binary 'RAB3GAP' complex that functions as a guanine-nucleotide exchange factor (GEF) for RAB18, whereas TBC1D20 shows modest RAB18 GTPase-activating (GAP) activity in vitro. Here, we show that in the absence of functional RAB3GAP or TBC1D20, the level, localization and dynamics of cellular RAB18 is altered. In cell lines where TBC1D20 is absent from the endoplasmic reticulum (ER), RAB18 becomes more stably ER-associated and less cytosolic than in control cells. These data suggest that RAB18 is a physiological substrate of TBC1D20 and contribute to a model in which a Rab-GAP can be essential for the activity of a target Rab. Together with previous reports, this indicates that Warburg Micro syndrome can be caused directly by loss of RAB18, or indirectly through loss of RAB18 regulators RAB3GAP or TBC1D20.

    Topics: Abnormalities, Multiple; Animals; Blotting, Western; Case-Control Studies; Cataract; Cells, Cultured; Cornea; Cytosol; Endoplasmic Reticulum; Fibroblasts; Flow Cytometry; Fluorescent Antibody Technique; Gene Expression Regulation; Guanosine Triphosphate; HeLa Cells; Humans; Hydrolysis; Hypogonadism; Intellectual Disability; Mice; Mice, Knockout; Microcephaly; Optic Atrophy; rab GTP-Binding Proteins; rab1 GTP-Binding Proteins; rab3 GTP-Binding Proteins; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger

2015
OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation.
    Human molecular genetics, 2010, Jun-01, Volume: 19, Issue:11

    The dynamin-related GTPase OPA1 is mutated in autosomal dominant optic atrophy (DOA) (Kjer type), an inherited neuropathy of the retinal ganglion cells. OPA1 is essential for the fusion of the inner mitochondrial membranes, but its mechanism of action remains poorly understood. Here we show that OPA1 has a low basal rate of GTP hydrolysis that is dramatically enhanced by association with liposomes containing negative phospholipids such as cardiolipin. Lipid association triggers assembly of OPA1 into higher order oligomers. In addition, we find that OPA1 can promote the protrusion of lipid tubules from the surface of cardiolipin-containing liposomes. In such lipid protrusions, OPA1 assemblies are observed on the outside of the lipid tubule surface, a protein-membrane topology similar to that of classical dynamins. The membrane tubulation activity of OPA1 is suppressed by GTPgammaS. OPA1 disease alleles associated with DOA display selective defects in several activities, including cardiolipin association, GTP hydrolysis and membrane tubulation. These findings indicate that interaction of OPA1 with membranes can stimulate higher order assembly, enhance GTP hydrolysis and lead to membrane deformation into tubules.

    Topics: Animals; Cardiolipins; Cryoelectron Microscopy; GTP Phosphohydrolases; Guanosine Triphosphate; Hydrolysis; Liposomes; Mice; Microscopy, Electron, Transmission; Microscopy, Fluorescence; Mutation; Optic Atrophy

2010