guanosine-triphosphate has been researched along with Hematologic-Neoplasms* in 2 studies
1 trial(s) available for guanosine-triphosphate and Hematologic-Neoplasms
Article | Year |
---|---|
Compound GW506U78 in refractory hematologic malignancies: relationship between cellular pharmacokinetics and clinical response.
In vitro investigations with arabinosylguanine (ara-G) demonstrated potent cytotoxicity to T-lymphoblastoid cell lines. The goals of the present study were to evaluate GW506U78, a prodrug of ara-G, against human hematologic malignancies and to determine its pharmacokinetics in plasma and cells.. During a phase I multicenter trial of GW506U78, 26 patients were treated at M.D. Anderson Cancer Center (MDACC). Daily doses between 20 and 60 mg/kg were administered for 5 days. Parallel plasma and cellular pharmacokinetic studies were conducted.. Complete (n=5) or partial remission (n=5) was achieved in T-cell acute lymphoblastic leukemia (T-ALL), T-lymphoid blast crisis, T-lymphoma, and B-cell chronic lymphocytic leukemia (B-CLL) (n=13). In contrast, patients with B-ALL, B-lymphoma, acute myelogenous leukemia (AMI), or T-CLL did not respond. Peak plasma concentrations of GW506U78 and ara-G were dose-dependent. The elimination of GW506U78 (half-life [t1/2]=17 minutes) was faster than the elimination of ara-G (t1/2=3.7 hours). Median peak concentrations of ara-GTP were 23, 42, 85, and 93 micromol/L at 20, 30, 40, and 60 mg/kg, respectively. T-lymphoblasts accumulated significantly (P=.0008) higher peak arabinsylguanosine triphosphate (ara-GTP) (median, 140 micromol/L; n=7) compared with other diagnoses (median, 50 micromol/L; n=9) and normal mononuclear cells (n=3). The ara-GTP elimination was slow in all diagnoses (median, > 24 hours). Responders accumulated significantly (P=.0005) higher levels of ara-GTP (median, 157 micromol/L) compared with patients who failed to respond (median, 44 micromol/L).. GW506U78 is an effective prodrug and a potent agent for hematologic malignancies with major efficacy in T-cell diseases. The pharmacokinetics of ara-GTP in leukemia cells are strongly correlated with clinical responses to GW506U78. Topics: Adult; Antineoplastic Agents; Arabinonucleosides; Arabinonucleotides; Child; Child, Preschool; Dose-Response Relationship, Drug; Guanosine Triphosphate; Hematologic Neoplasms; Humans; Leukemia, B-Cell; Leukemia, T-Cell; Multicenter Studies as Topic; Prodrugs; Time Factors; Treatment Outcome | 1998 |
1 other study(ies) available for guanosine-triphosphate and Hematologic-Neoplasms
Article | Year |
---|---|
Determination of Ras-GTP and Ras-GDP in patients with acute myelogenous leukemia (AML), myeloproliferative syndrome (MPS), juvenile myelomonocytic leukemia (JMML), acute lymphocytic leukemia (ALL), and malignant lymphoma: assessment of mutational and indi
The 21-kD protein Ras of the low-molecular-weight GTP-binding (LMWG) family plays an important role in transduction of extracellular signals. Ras functions as a 'molecular switch' in transduction of signals from the membrane receptors of many growth factors, cytokines, and other second messengers to the cell nucleus. Numerous studies have shown that in multiple malignant tumors and hematopoietic malignancies, faulty signal transduction via the Ras pathway plays a key role in tumorigenesis. In this work, a non-radioactive assay was used to quantify Ras activity in hematologic malignancies. Ras activation was measured in six different cell lines and 24 patient samples, and sequence analysis of N- and K-ras was performed. The 24 patient samples comprised of seven acute myelogenous leukemia (AML) samples, five acute lymphocytic leukemia (ALL) samples, four myeloproliferative disease (MPD) samples, four lymphoma samples, four juvenile myelomonocytic leukemia (JMML) samples, and WBC from a healthy donor. The purpose of this study was to compare Ras activity determined by percentage of Ras-GTP with the mutational status of the Ras gene in the hematopoietic cells of the patients. Mutation analysis revealed ras mutations in two of the seven AML samples, one in codon 12 and one in codon 61; ras mutations were also found in two of the four JMML samples, and in one of the four lymphoma samples (codon 12). We found a mean Ras activation of 23.1% in cell lines with known constitutively activating ras mutations, which was significantly different from cell lines with ras wildtype sequence (Ras activation of 4.8%). Two of the five activating ras mutations in the patient samples correlated with increased Ras activation. In the other three samples, Ras was probably activated through "upstream" or "downstream" mechanisms. Topics: DNA Mutational Analysis; Guanosine Diphosphate; Guanosine Triphosphate; Hematologic Neoplasms; Humans; Leukemia, Myeloid, Acute; Leukemia, Myelomonocytic, Juvenile; Lymphoma; Mutation; Myeloproliferative Disorders; Oncogenes; Precursor Cell Lymphoblastic Leukemia-Lymphoma; ras Proteins; Signal Transduction; Tumor Cells, Cultured | 2009 |