guanosine-diphosphate and Precursor-Cell-Lymphoblastic-Leukemia-Lymphoma

guanosine-diphosphate has been researched along with Precursor-Cell-Lymphoblastic-Leukemia-Lymphoma* in 2 studies

Other Studies

2 other study(ies) available for guanosine-diphosphate and Precursor-Cell-Lymphoblastic-Leukemia-Lymphoma

ArticleYear
Determination of Ras-GTP and Ras-GDP in patients with acute myelogenous leukemia (AML), myeloproliferative syndrome (MPS), juvenile myelomonocytic leukemia (JMML), acute lymphocytic leukemia (ALL), and malignant lymphoma: assessment of mutational and indi
    Annals of hematology, 2009, Volume: 88, Issue:4

    The 21-kD protein Ras of the low-molecular-weight GTP-binding (LMWG) family plays an important role in transduction of extracellular signals. Ras functions as a 'molecular switch' in transduction of signals from the membrane receptors of many growth factors, cytokines, and other second messengers to the cell nucleus. Numerous studies have shown that in multiple malignant tumors and hematopoietic malignancies, faulty signal transduction via the Ras pathway plays a key role in tumorigenesis. In this work, a non-radioactive assay was used to quantify Ras activity in hematologic malignancies. Ras activation was measured in six different cell lines and 24 patient samples, and sequence analysis of N- and K-ras was performed. The 24 patient samples comprised of seven acute myelogenous leukemia (AML) samples, five acute lymphocytic leukemia (ALL) samples, four myeloproliferative disease (MPD) samples, four lymphoma samples, four juvenile myelomonocytic leukemia (JMML) samples, and WBC from a healthy donor. The purpose of this study was to compare Ras activity determined by percentage of Ras-GTP with the mutational status of the Ras gene in the hematopoietic cells of the patients. Mutation analysis revealed ras mutations in two of the seven AML samples, one in codon 12 and one in codon 61; ras mutations were also found in two of the four JMML samples, and in one of the four lymphoma samples (codon 12). We found a mean Ras activation of 23.1% in cell lines with known constitutively activating ras mutations, which was significantly different from cell lines with ras wildtype sequence (Ras activation of 4.8%). Two of the five activating ras mutations in the patient samples correlated with increased Ras activation. In the other three samples, Ras was probably activated through "upstream" or "downstream" mechanisms.

    Topics: DNA Mutational Analysis; Guanosine Diphosphate; Guanosine Triphosphate; Hematologic Neoplasms; Humans; Leukemia, Myeloid, Acute; Leukemia, Myelomonocytic, Juvenile; Lymphoma; Mutation; Myeloproliferative Disorders; Oncogenes; Precursor Cell Lymphoblastic Leukemia-Lymphoma; ras Proteins; Signal Transduction; Tumor Cells, Cultured

2009
Mutated D4-guanine diphosphate-dissociation inhibitor is found in human leukemic cells and promotes leukemic cell invasion.
    Experimental hematology, 2008, Volume: 36, Issue:1

    Rho GTPase may be involved in human cancer invasion via the augmentation of cell motility and adhesion. We report on two point mutations of the D4-guanine diphosphate (GDP)-dissociation inhibitor (GDI) gene, one of the Rho-GDIs, which were found in a human leukemic cell line, Reh, and the mutated D4-GDI functions as an accelerator of leukemic cell invasion.. We investigated the altered activity of GDP dissociation by mutated (mt) D4-GDI and the functions of this mt and wild-type (wt) D4-GDI in invasion. The mice inoculated with wt or mt D4-GDI vector-transfected Raji cells were observed and examined pathologically. Adhesiveness and cell motility of wt or mt D4-GDI vector-transfected Raji cells were examined. Finally, it was examined whether Rho activation was changed by mutation of D4-GDI under the condition of Rho-GDI knockdown.. Two point mutations of the D4-GDI gene were found in Reh cells. The region of mutations is conserved among members of the Rho-GDI family at the amino acid level. D4-GDI with two mutations (V68L and V69A) functioned in a dominant negative manner in the inhibition of GDP dissociation from Rho. Severe combined immune-deficient mice inoculated with Raji cells developed hemiparalysis. The Raji cells were present in bone marrow and peripheral blood, and hepatic invasion was observed in 20% of the mice. Mice inoculated with wt D4-GDI vector-transfected Raji cells (wt D4) showed later paralysis and none developed hepatic invasion. Mice inoculated with mt D4-GDI-transfected Raji cells (mt D4) showed a 5-day reduction in the time to paraplegia and death. In addition, hepatic invasion was evident in 80% of mice transplanted with mt D4 cells. There were no differences in growth rates and amounts of guanine triphosphate (GTP)-bound Rho, cdc42, or Rac among all clones, however, GTP-bound Rho in mt D4 clone with short hairpin RNA (shRNA) vector for Rho-GDI knockdown was increased compared with wt D4 clone with shRNA vector for Rho-GDI knockdown. The mt D4 cells showed an augmentation of adhesiveness and cell motility. On the other hand, wt D4 cells showed a decreased ability of cell motility.. These results suggest the mutated D4-GDI functions as a dominant negative molecule against the wt D4-GDI and accelerates invasion via regulation of cytoskeletal machinery.

    Topics: Amino Acid Sequence; Amino Acid Substitution; Animals; Burkitt Lymphoma; Cell Adhesion; Cell Line, Tumor; Cell Movement; Child; Conserved Sequence; Female; Genes, Dominant; Guanine Nucleotide Dissociation Inhibitors; Guanosine Diphosphate; Humans; Leukemia, T-Cell; Mice; Mice, SCID; Molecular Sequence Data; Mutation, Missense; Neoplasm Invasiveness; Neoplasm Proteins; Paresis; Precursor Cell Lymphoblastic Leukemia-Lymphoma; rho GTP-Binding Proteins; rho Guanine Nucleotide Dissociation Inhibitor beta; rho-Specific Guanine Nucleotide Dissociation Inhibitors; Sequence Alignment; Tumor Suppressor Proteins

2008